DATA INTERPRETATI ON

3. LINE GRAPH

Directions 1-5 :

1. (a) Both the lines in the graph intersect at 10:30 am
2. (b) average speed $=\frac{120}{5 / 2}=48 \mathrm{~km} / \mathrm{h}$
3. (c) time $=11: 30-9: 00=2 \frac{1}{2}$ hours
4. (d) 80 , it clear from the graph
5. (b) difference between temperature

Sunday $=39-23=16^{\circ}$
Saturday $=42.5-24=18.5^{\circ}$ (maximum)
Wednesday $=32.5-15=17.5^{\circ}$
6. (a) $\frac{\text { Exports }}{\text { imports }}=1.75=\frac{175}{100}=\frac{7}{4}$

After 40\% increase imports
imports $=4 \times \frac{140}{100}=\frac{560}{100}=\frac{56}{10}$
$\frac{\text { Exports }}{1 \mathrm{mports}}=\frac{7 \times 10}{56}=\frac{70}{56}=\frac{5}{4}=1.25$
7. (b) In the year 2005

Imports of company x=Rs. 180 crores
Exports $=1.75 \times 180=$ Rs. 315 crores
Exports of company y=Rs. 157.5 crores
Imports of company y $=157.5 / 0.75=210$ crores
8. 1; Number of students in 1994

$$
\begin{aligned}
& =1500+(300-250)+(250-350) \\
& =1500+50-100=1450
\end{aligned}
$$

Number of students in 1995

$$
=1450+(500-400)=1550
$$

\therefore Required increase $=1500-1400=100$
9. 4; From the graph's inclination, it is clear that the percentage rise/fall is maximum in the year 1997 with respect to previous year.
10. 4; Number of students in 1996

$$
=1550+(450-300)=1700
$$

11. 4; Strength of the school in different years

1993	1994	1995	1996	1997	1998
1550	1450	1550	1700	1600	1650

12. 2 ; Required $\%=\frac{1700}{1450} \times 100 \approx 117 \%$
(13-17) :
13. 4; There is no relationship between the revenue expenditure in 1997-98 and 1996-97. So the total revenue expenditure in 1996-97 can't be determined.
14. 4; Without knowing the total expenditure for the two financial years, we can't find out the answer.
15. 1; Required revenue different between others and defence $=(20$ $-14) \%$ of $302537=18152.22$ crore
16. 3; Required percentage $=\frac{16}{36} \times 100=44.45 \%$
17. 2; Total revenue expenditure on grants to state and Uts

$$
=\frac{47781}{15} \times 18.6 \approx 59250 \text { crore }
$$

Profit $=\frac{\% \text { Profit } \times \text { Expenditure }}{100}$
Clearly, profit of the company will depend on the value of the (\% Profit \times Expenditure). Greater the value of this greater the amount of profit. By visual inspection of the graph we can see that the maximum amount of profit is in the year 2001.
19. 1; Income of the company in different years is as given below: $1996=80.50,1997=108.90,1998$

$$
\begin{aligned}
& =175.50,1999=150,2000=210 \text { and } 2001 \\
& =279
\end{aligned}
$$

\therefore Required average
$=\frac{80.50+108.90+175.50+150+210+279}{6} \approx$ Rs. 170 lakhs.
20. 2; The maximum difference in the $\%$ profit the company for any two consecutive years is 15 and the minimum base is 21. Hence, our answer is 1998.
21. 4; Income of company in $2000==150\left(\frac{140}{100}\right)=210$
22. 1' Income in $1998=140 \%$ of $130=$ Rs. 182 lakhs.

Question 23-27:
23.B

Imports of the company A will be more than export when the value of the ratio of import to export is more than 1 .
Such years are $2001,2003,2004$ ancl 2005. Thercforc, number of ycars - 1
24.A

Exports of the company B will be more than import when the value of the ratio of export to import is less than 1.
Such year is 1998 .
25.C

In the year 1999,
import $_{69}$: export99 $=0.8$
i.e. import ${ }_{\circ 0}$: export ${ }_{80}=4: 5$

If there is x between the ratio, then import
$=4 x$ and export $0=5 x$
In the year 2000.
import $_{0}$: export $=0.8$
i.e. import ${ }_{00}$: export ${ }_{\circ 0}=4: 5$
then import ${ }_{\circ 0}=4 y$ and export $=5 y$
Since, total export $=₹ 72$ crore
export $_{9 g}+$ export $_{00}=5 x+5 y=5(x+y)$
Now, $5(x+z /)=72$
$(x+y)=\frac{72}{5}$
Now, total import $=$ import $_{s p}+$ import $_{s p}$
$=4 x+4 y$
$=4(x+y)$
$=4 \times \frac{72}{5}$
$=₹ 57.6$ crore
26.B

The exports of company B with relation
to imports were maximum in the year
2004.
27.E

Ratio of export to import in the year 2003 is 1.3 .
Therefore, $\frac{\text { Import }}{\text { Export }}=\frac{13}{10}$
(18-22) :
18. 2; \therefore Profit $=$ Income - Expenditure

