

A PREMIER INSTITUTE FOR BANK PO/SSC/MCA/MBA-CAT ENTRANCE ACADEMY

LINE ANGLE AND TRIANGLE

- Two line segments PQ and RS intersect at X in such a way that XP=XR. If ∠PSX=∠RQX, then one must have
 (a) PP=QS (b) PS=PQ (c) ∠XSQ=∠XPR (d) ar
 - (a) PR=QS (b) PS=RQ (c) \angle XSQ= \angle XRP (d) ar (\triangle PXR)=ar (\triangle QXS)
- 2. In a \triangle ABC, $\overline{AB}^2 + AC^2 = BC^2$ and $\overline{BC} = \sqrt{2}\overline{AB}$, then \angle ABC is :
 - (a) 30° (b) 45° (c) 60° (d) 90°
- 3. In triangle PQR, points A, B and C are taken on PQ. PR and QR respectively such that QC=AC and CR=CB. If ∠QPR=40°. Then ∠ACB is equal to:
 - (a) 140° (b) 40° (c) 70° (d) 100°
- 4. The internal bisectors of \angle ACB of \triangle ABC meet each other at O. If \angle BOC=110°, then \angle BAC is equal to
 - (a) 40° (b) 55° (c) 90° (d) 110°
- 5. Ac is the diameter of a circumcircle of \triangle ABC. Chord ED is parallel to the diameter AC. If \angle CBE =50°, then the measure of \angle DEC is
 - (a) 50°(b) 90° (c) 60° (d) 40°
- 6. O is the incentre of \triangle ABC and \angle BOC=110°. Find \angle BAC. (a) 40° (b) 45° (c) 50° (d) 55°
- 7. In \triangle ABC, $\angle B = 60$ °C=40°. If AD and AE be respectively the internal bisector of \angle A and perpendicular on BC, then the measure of \angle DAE is
 - (a) 5° (b) 10° (c) 40° (d) 60°
- 8. A circle (with centre at O) is touching two intersecting lines AX and BY. The two points of contact A and B subtend an angle of 65° at any point C on the circumference of the circle. If P is the point of intersection of the two lines, then the measure of ∠APO is
 - (a) 25° (b) 65° (c) 90° (d) 40°
- 9. Internal bisectors of \angle B and \angle C of \triangle ABC intersect at O. If \angle BOC =102°, then the value of \angle BAC is
 - (a) 12° (b) 24° (c) 48° (d) 60°
- 10. ABCD is a cyclic quadrilateral and O is the centre of the circle. If \angle COD=140° and \angle BAC= 40°, then the value of \angle BCD is equal to
 - (a) 70° (b) 90° (c) 60° (d) 80°
- 11. A chord of a circle is equal to its radius. The angle subtended by this chord at a point on the circumference in the major segment is
 - (a) 60° (b) 120° (c) 90° (d) 30°
- 12. The angle between the external bisectors of two angles of a triangle is 60°. Then the third angle of the triangle is
 - (a) 40° (b) 50° (c) 60° (d) 80°
- 13. If the internal bisectors of the \angle ABC and \angle ACB of \triangle ABC meet at O and also \angle BAC=80°, then \angle BOC is equal to

- (a) 50° (b) 160° (c) 40° (d) 130°
- 14. Internal bisectors of angles ∠B and ∠C of a triangle ABC meet at O. If ∠BAC =80°, then the value of ∠BOC is

 (a) 120° (b) 140° (c) 110° (d) 130°
- 15. If G be the centroid of a triangle ABC such that AG=BC, then the magnitude of ∠BGC is
 - (a) 60° (b) 90° (c) 120° (d) 135°
- 16. O is the centre and arc ABC subtends an angle of 130° at O. AB is etended to P. Then \angle PBC is
 - (a) 75° (b)70° (c) 65° (d) 80°
- 17. In a \triangle ABC and D \angle A : \angle B: \angle C= 2: 3: 4 one line CD \parallel AB is find the value \angle ACD
 - (a) 40° (b) 60° (c) 80° (d) 20°
- 18. In triangle ABC, \angle BAC=75°, \angle ABC=45°. \overline{BC} is produced to D. If \angle ACD=x°, then $\frac{x}{3}$ % of 60° is
 - (a) 30° (b) 48° (c) 15° (d) 24°
- 19. In a \triangle ABC, AB=AC and BA is produced to D such that AC=AD. Then the \angle BCD is
 - (a) 100° (b) 60° (c) 80° (d) 90°
- 20. In \triangle ABC, \angle A+ \angle B=65°, \angle B+ \angle C=140°, then find \angle B (a) 40° (b)25° (c) 35° (d) 20°
- 21. In a triangle ABC, \angle A=90°, \angle C=55°; $\overline{AD} \perp \overline{BC}$. What is the value of \angle BAD?
 - (a) 35° (b) 60° (c) 45° (d) 55°
- 22. If O be the circumcentre of a triangle PQR and ∠QOR=110°, ∠OPR=25°, then the measure of ∠PRQ is
 - (a) 65° (b) 50° (c) 55° (d) 60°
- 23. In the following figure, AB be diameter of a circle whose centre is O. If ∠AOE=150°, ∠DAO=51° then the measure of ∠CBE is

- (a) 115° (b) 110° (c) 105° (d) 120°
- 24. In the given figure line k and l are parallel. The value of a^o+b^o is figures

A PREMIER INSTITUTE FOR BANK PO/SSC/MCA/MBA-CAT ENTRANCE ACADEMY

- (a) 45° (b) 100° (c) 180° (d) 360°
- 25. If the orthocentre and the centroid of a triangle are the same then the triangle is :
 - (a) scalene (b) right angled (c) equilateral (d) obtuse angled
- 26. The in radius of an equilateral triangle is of length 3 cm. Then the length of each of its medians is
 - (a) 12cm (b) 9/2 cm (c) 4 cm (d) 9 cm
- 27. In a triangle, if three altitudes are equal, then the triangle is
 - (a) obtuse (b) equilateral (c) right (d) isosceles
- 28. If area of an equilateral triangle is a and height b, then value of b^2/a is :
 - (a) 3 (b) 1/3 (c) $\sqrt{3}$ (d) $\frac{1}{\sqrt{3}}$
- 29. The side QR of an equilateral triangle PQR is produced to the point S in such a way that QR=RS and P is joined to S. Then the measure of ∠ PSR is
 - (a) 30° (b) 15° (c) 60° (d) 45°
- 30. \triangle ABC is an isosceles a triangle and $\overline{AB} = \overline{AC} = 2a$ unit $\overline{BC} = a$ unit. Draw $\overline{AD} \perp \overline{BC}$, and find the length of \overline{AD} .
 - (a) $\sqrt{15}$ a unit (b) $\frac{\sqrt{15}}{2}$ a unit (c) $\sqrt{17}$ a unit (d) $\frac{\sqrt{17}}{2}$ a unit C=1/2 PB
- 31. If \triangle ABC is an isosceles triangle with \angle C=90° and AC=5 cm, then AB is
 - (a) 5 cm (b) 10 cm (c) $5\sqrt{2}$ cm (d) 2.5
- 32. ABC is an isosceles triangle with AB=AC. A circle through B touching AC at the middle point intersects AB at P. Then AP:AB is
 - (a) 4:1 (b) 2:3 (c) 3:5 (d) 1:4
- 33. ABC is an isosceles triangle such that AB=AC and \angle B=35°. AD is the median to the base BC. Then \angle BAD is
 - (a) 70° (b) 35° (c) 110° (d) 55°
- 34. ABC is an isosceles triangle with AB=AC. The side BA is produced to D such that AB=AD if ∠ABC=30°, then ∠BCD is equal to
 - (a) 45° (b) 90° (c) 30° (d) 60°

- 35. Inside a triangle ABC, a straight line parallel to BC intersects AB and AC at the points P and Q respectively. If AB=3 PB, then PQ:BC is
 - (a) 1:3 (b) 3:4 (c) 1:2 (d) 2:3
- 36. For a triangle, base is $6\sqrt{3}$ cm and two base angles are 30° and 60°. Then height of the triangle is
 - (a) $3\sqrt{3}$ cm (b) 4.5 cm (c) $4\sqrt{3}$ cm (d) $2\sqrt{3}$ cm
- 37. In a triangle ABC, ∠BAC=90° and AD is perpendicular to BC. If AD=6 cm and BD=4 cm, then the length of BC is
 (a) 8 cm (b) 10 cm (c) 9 cm (d) 13 cm
- 38. In a right angled triangle, the product of two sides is equal to half of the square of the third side i.e., hypotenuse. One of the acute angles must be

 (a) 60° (b) 30° (c) 45° (d) 15°
- 39. In \triangle ABC, \angle A=90° and AD \perp BC where D lies on BC. If BC=8cm, AC=6 cm, then \triangle ABC: \triangle ACD=? (a) 4:3 (b) 25:16 (c) 16:9 (d) 25:9
- 40. The areas of two similar triangles ABC and DEF are 20 $\,$ cm 2 and 45 cm 2 respectively. If AB=5 cm, then DE is equal to :
 - (a) 6.5 cm (b) 7.5 cm (c) 8.5 cm (d) 5.5 cm
- 41. If \triangle ABC is similar to \triangle DEF such that BC=3 cm, EF=4 cm and area of \triangle ABC=54cm 2 , then the area of \triangle DEF is
 - (a) 66cm^2 (b) 78cm^2 (c) 96cm^2 (d) 54 cm^2
- 42. Two triangles ABC and DEF are similar to each other in which AB=10 cm, DE=8 cm. Then the ratio of the areas of triangles ABC and DEF is
 - (a) 4:5 (b) 25:16 (c) 64:125 (d) 4:7
- 43. In △ ABC, the internal bisectors of ∠ ABC and ∠ ACB meet at I and ∠ BAC=50°. The measure of ∠ BIC is

 (a) 105° (b) 115° (c) 125° (d) 130°
- 44. The exterior angles obtained on producing the base BC of a triangle ABC in both ways are 120° and 105°, then the vertical ∠A of the triangle is of measure
 - (a) 36° (b) 40° (c) 45° (d) 55°
- 45. If in triangle ABC, Base BC is increase in two side, what is the value of outer triangle B and C
 - (a) π -A (b) π +A (c) $\frac{\pi}{2}$ +A (d) π - $\frac{A}{2}$
- 46. O is the center of triangle ABC and \angle A=30°. Then what is the value of \angle BOC
 - (a) 100° (b) 105° (c) 110° (d) 90°