GUPTA CLASSES

SBI PO

(PRE MOCK-2) SOLUTION

1.(d)2.(d)3.(e)
(4-5)

4. (b) 5 .
5. (b) 6. (e) 7 .
(a) 8.
(b) 9 .
(d) 10. (c)
11.(c) 12. (a)

Solutions (13-17): In the first step one word is rearranged and in the second step one number is rearranged. These two steps are repeated alternately until all the words are arranged alphabetically in the reverse order and all the numbers are arranged in descending order. 13. (4)

Input : glass full 1537 water now 8567
Step I : water glass full 1537 now 8567
Step II : water 85 glass full 1537 now 67
Step III : water 85 now glass full 153767
Step IV: water 85 now 67 glass full 1537
Step V : water 85 now 67 glass 37 full 15
Step V is the last step.
14. (4)

Step II : ultra 731216 mail sort 39 kite
Step III : ultra 73 sort 1216 mail 39 kite
Step IV : ultra 73 sort 391216 mail kite
Step V : ultra 73 sort 39 mail 1216 kite
Step VI : ultra 73 sort 39 mail 1612 kite
Step VII : ultra 73 sort 39 mail 16 kite 12
15. (4) From the given step, Input cannot be determined.
16. (1)

Step II : tube 834934 garden flower rat 56
Step III : tube 83 rat 4934 garden flower 56
Step IV : tube 83 rat 564934 garden flower
Step V : tube 83 rat 56 garden 4934 flower
Step VI : tube 83 rat 56 garden 49 flower 34
17. (1)

Input : hunt for 9437 good 2948 book
Step I : hunt 94 for 37 good 2948 book
Step II : hunt 94 good for 372948 book
Step III : hunt 94 good 48 for 3729 book
Step IV : hunt 94 good 48 for 37 book 29
Solutions (18-22) :
@ - \geq \$ - $\leq \%$ - > \# - < © - =
18. (4)

Statement :

$A \geq B<C \geq D$
Conclusions:
I. D $>$ A II. C > A
19. (2)

Statement:
$M \leq N \geq P>Q$
Conclusions:
I. P = M II. Q < N
20. (4):

Statement :
$\mathrm{E}>\mathrm{F}<\mathrm{G} \geq \mathrm{H}$
Conclusions:
I. H < F II. E > G
21. (3)

Statement :
$\mathrm{J}=\mathrm{K} \leq \mathrm{L}>\mathrm{M}$
Conclusions:
I. L = J II. L > J
22. (1)

Statement:
$W<X>Y=Z$

Conclusions:

I. $\mathrm{Z}<\mathrm{X}$ II. $\mathrm{Y}<\mathrm{W}$
(23-27):

Date	Day	Exam	Time Duration
$12^{\text {th }}$ April	Wednesday	History	65 mins
$13^{\text {th }}$ April	Thursday	Maths	55 mins
14 th april	Friday	English	95 mins
$16^{\text {th }}$ april	Staturday	Hindi	105 mins
$17^{\text {th }}$ April	Sunday	Off	Off
$18^{\text {th }}$ April	Monday	Economics	75 mins

23. (5) 24. (2) 25. (4)
24. (1) 27. (4)
(28-32) :
25. (5) 29. (3) 30. (1)
26. (4) 32. (5)
(33-35) :
27. (3) Condition of the architectural structure can be improved by way of adequate finance, hence action III, that grant

GUPTA CLASSES

mwnsuppacasases.com A PREMIER INSTITUTE FOR SSC/BANK/D.P./LIC/CDS/NDA ENTRANCE
should be given to improve the condition of the structure, is the right course of action.
34. (4) In the statement, celebration of teacher's day in today's materialistic world is in question which means that the role and responsibilities of teachers should be seen in today's perspective. Hence, action III is the right course of action.
35. (2) The statement speaks of the failure of housing and urban development policies of the government. Hence, the policies in regard to urban housing should be reviewed.
Maths
36. (1) 64% of 950
? $=475+608-900=1083-900=183$
37. (2)
38. (3) $?=534.596+61.472-496.708-27.271$
? $=596.068-523.979=72.089$
39. (5) $?=16 \times 12-672 \div 21+211$
or $?=192-32+211$
or $?=160+211=371$
40. (4) $(\sqrt{5}-2)^{2}=?-\sqrt{80}$
41. (2) The given series is
$+(13 \times 1),+(13 \times 2)+(13 \times 4),+(13 \times 8),+(13 \times 16)$
42. (2) The given series is
$+(-1)^{3},+(2)^{2},+(-3)^{3},+(4)^{2},+(-5)^{3}$
43. (5) The given series is
$+(11 \times 1),+(11 \times 3),+(11 \times 5)^{2},+(11 \times 7),+$
(11×9) so next no. is 302.
44. (3) The given series is
$-(9 \times 9),-(9 \times 8),-(9 \times 7),-(9 \times 6),-(9 \times 5)$
45. (3) The given series is
$+(14)^{2},+(13)^{2},(12)^{2},+(11)^{2}+(10) 2$
46. (4) Approximate value can be given as
$9230-5020+1500=10730-5020=5710$
» 5700
47. (4) Approximate value can be given as
$(1002 \div 92 » 20) \times 99-1300$
$=1980-1300=680 » 700$
48. (4) Approximate value can be given as
30% of $260+60 \%$ of $510-103$
$=78+306-103=384-103=281>280$
49. (1) Approximate value can be given as
$(22)^{2}(25)^{2}+(13)^{2}=484+169-625$
$=653-625=28$ » 25
50. (5) Approximate value can be given as
$\sqrt{2498}>\sqrt{2500}=50$
$\sqrt{626} » \sqrt{625}=25$ р $\sqrt{99} » \sqrt{100}=10$
$?=50 \times 25 \div 10=50 \times \frac{5}{2}=125$
51. (4) I. $x^{2}-10 x+21=0$
or $(x-3)(x-7)=0$
$x=3,7$
II. $y^{2}-16 y+63=0$
or $(y-9)(y-7)=0$
$\square y=9,7$$x<y$
52. (4) I. $x^{2}-(16)^{2}=(23)^{2}-56$
$\square x=729=+27$
II. $y 1 / 3-55+376=(18)^{2}$
$\square y=(3)^{3}=27$$y>x$
53. (3) I. $\frac{12}{\sqrt{x}}+\frac{8}{\sqrt{x}}=\sqrt{x}$
$20=x$
II. $y-\frac{(18)^{9 / 2}}{\sqrt{y}}=0$
$\square y=83$
$\square x<y$
54. (1) I. $\sqrt{36} x+\sqrt{64}=0$
or $x=-\frac{4}{3}$
II. $\sqrt{81} y+(4)^{2}=0$
or $y=-$
16
9
$\square x>y$
55. (3) I. $\frac{25}{\sqrt{x}}+\frac{9}{\sqrt{x}}=17 \sqrt{x}$
or $34=17 x$$x=2$
II. $\frac{\sqrt{y}}{3}+\frac{5 \sqrt{y}}{6}=\frac{3}{\sqrt{y}}$
$\square y=\frac{318}{21}=\frac{18}{7}$
$\square x<y$
56. (5) Side of the square $=1,024 \mathrm{~cm}^{2}=32 \mathrm{~cm}$ Length of rectangle $=32 \times 2 \mathrm{~cm}=64 \mathrm{~cm}$
Breadth of rectangle $=32-12=20 \mathrm{~cm}$
Required ratio $=64: 20=16: 5$
57. (1) Sachin's score $=442-76-(76-12)-$ $102=200$
58. (1) Let the length of Train B be $2 x$ and that of Train A be x.

A PREMIER
Speed of Train A $=\frac{x}{20}$
Speed of Train B $=\frac{2 x}{60}=\frac{x}{30}$
Ratio $=\frac{\text { speed }_{A}}{\text { Speed }_{B}}=\frac{x .30}{20 . X}=\frac{3}{2}=3: 2$
59. (3) Cost of 1 kg of mangoes $=\frac{456}{19}$ Rs. 24

Cost of 1 kg of apples $=2 \times 48=$ Rs. 96
Cost of 1 kg of almonds $=\frac{50.96}{8}$ Rs. 600
Cost of 3 kg of almonds and 4 kg of apples
$=3 \times 600+4 \times 96=$ Rs. 2184
60. (3)
61. (1) Percentage decrease $=\frac{(6.4-5.3)}{6.4}$
$\times 100$
= 17.18
62. (3) Girls in school B in $2009=590$

Boys and girls in school E in $2006=550$
$+360=910$
Percentage $=\frac{590}{910} \times 100=64.83 \%$
(approx)
63. (3) Average number of girls is school A over
the years =
$\frac{360+420+690+960+1290+1440}{6}=\frac{5160}{6}$
$=860$
64. (3) Required ratio $=\frac{\text { Boys in school } C \text { in } 2009}{\text { Girls in school } A \text { in } 2009}$
$\frac{870}{1290}=29: 43$
65. (4)

Year	Total number of students
2005	1310
2006	910
2007	510
2008	1110
2009	1330
2010	3350

66. (1) Male teachers in District $F=100$

Female teachers in District C
$=\frac{\chi 28}{\xi 100} 4500-600$
$=1260-600=660$
Female teachers in District $B=$
$\frac{\chi 16}{\xi 100} 4500 \varnothing \div-400=720-400=320$
Total $=100+660+320=1080$
67. (4) Female teachers in District D
$=$
$\frac{\chi 15}{\xi 100} 4500 \varnothing \div-100=675-100=575$
Total number of teachers in District A
=
$\frac{14}{100} \times 4500=630$
Percentage $=\frac{575}{630} \times 100=91.2 \% » 90 \%$
68. (3)
69. (2) Female teachers in District F
$=\frac{\chi^{6}}{\xi 100} 4500-\varnothing \div-100=270-100=170$
Total number of teachers in District E
=
$\frac{21}{100} \times 4500=945$
Difference $=945-170=775$
70. (3)
$\frac{\text { Male teachers in Distric C }}{\text { Female teachers in Distric }}=\frac{600}{320}=\frac{15}{8}$
71. (2) 81. (3) 91. (1)
72. (1) 82. (4) 92. (3)
73. (4) 83. (5) 93. (2)
74. (4) 84. (1) 94. (4)
75. (5) 85. (4) 95. (5)
76. (3) 86. (4) 96. (1)
77. (1) 87. (2) 97. (3)
78. (5) 88. (3) 98. (2)
79. (2) 89. (5) 99. (5)
80. (4) 90. (1) 100. (5)

