POLYGON Assignment -1

Answersheet

1. (a), 2. (c), 3. (b), 4. (c), 5. (d), 6. (c),
$\begin{array}{lll}\text { 7. (c), } & \text { 8. (d), } & \text { 9. (a), 10. (a), } \\ \text { 12. } & \text { 11. (c), }\end{array}$ 13. (B), 14. (c)
2. Solution: (a)

Step 1: Write down the formula $(\mathrm{n}-2) \times 180^{\circ}$
Step 2: Plug in the values $(7-2) \times 180^{\circ}=5 \times 180^{\circ}=$ 900°
Answer: The sum of the interior angles of a heptagon (7sided) is 900°.
2. Solution: (c)

Step 1. Write down $\frac{(n-2) \times 180^{\circ}}{n}$
Step 1: Write down the formula

$$
\frac{(8-2) \times 180^{\circ}}{8}=135^{\circ}
$$

Step 2: Plug in the values
Answer: Each interior angle of an otagon (8-sided) is 135°.
The answer is $180^{\circ}-45^{\circ}=135^{\circ}$.
A regular polygon has equal exterior angles of 72°.
3. (b) The sum of interior angles of a polygon of n sides is given by
$(2 n-4) \times \frac{\pi}{4}$
$(2 n-4) \times \frac{\pi}{2}=1620 \times \frac{\pi}{180}$
$(2 n-4)=\frac{1620 \times 2}{180}=(2 n-4)=\frac{3240}{180}$
$2 n-4=18$
$2 n=22, \Rightarrow n=11$
4. (c) Let n be the number of sides of the polygon.

Interior anle $=8 \times$ Exterior angles
$\frac{(2 n-4) \times \frac{\pi}{2}}{n}=8 \times \frac{2 \pi}{n}$
$n-2=16 \Rightarrow n=18$
5. Solution (d)

Each Interior angle of regular polygon $=2 n-4.90 / n$
Each external angle of regular polygon $=360 / n$
By question, $2 n-4.90 / n=2.360 / n$
After solving above question we get $\mathrm{n}=6$
6. Solution (c) : Sum of Interior Angles in a Polygon = 180(n-2)
Sum of Interior Angles in a Polygon $=180(5-2)$
Sum of Interior Angles in a Polygon $=180$ (3)
Sum of Interior Angles in a Polygon = 540
Now you have x parts that make up this degree.
$x=2+3+3+5+5$
$\mathrm{x}=18$
540/18 = The Degree of One Part
$30=$ The Degree of One Part
And the smallest angle has 2 x so 2 time 30 equals to 60
degrees.
Therefore the smallest angle is 60 degrees.
7. Solution : (c)

Angle AOB is given by
angle $(A O B)=360^{\circ} / 6=60^{\circ}$
Since $O A=O B=10 \mathrm{~cm}$, triangle $O A B$ is isosceles which gives
angle (OAB) = angle (OBA)
So all three angles of the triangle are equal and therefore it is an equilateral triangle. Hence
$A B=O A=O B=10 \mathrm{~cm}$.

8. Solution

- Let t be the size of angle AOB, hence $\mathrm{t}=360^{\circ} / 5=72^{\circ}$
- The polygon is regular and $O A=O B$. Let M be the midpoint of $A B$ so that $O M$ is perpendicular to $A B$. $O M$ is the radius of the inscribed circle and is equal to 6 cm . Right angle trigonometry gives $\tan (\mathrm{t} / 2)=\mathrm{MB} / \mathrm{OM}$
- The side of the pentagon is twice MB, hence side of pentagon $=2 \mathrm{OM} \tan (\mathrm{t} / 2)=8.7 \mathrm{~cm}$ (answer rounded to two decimal places)

9. Solution (a)

- A dodecagon is a regular polygon with 12 sides and the central angle t opposite one side of the polygon is given by.
$\mathrm{t}=360^{\circ} / 12=30^{\circ}$
We now use the formula for the area when the side of the regular polygon is known
Area $=(1 / 4) n x^{2} \cot \left(180^{\circ} / n\right)$
Set $\mathrm{n}=12$ and $\mathrm{x}=6 \mathrm{~mm}$
area $=(1 / 4)(12)(6 \mathrm{~mm})^{2} \cot \left(180^{\circ} / 12\right)$
$=403.1 \mathrm{~mm}^{2}$ (approximated to 1 decimal place).

10. Let the smallest side of the plygon be a

The largest side of the polygon $=20 \mathrm{a}$
Since the polygon has 25 sides of the polygon are respectively

A PREMIER INSTITUTE FOR BANK PO/SSC/MCA/MBA-CAT ENTRANCE ACADEMY
$a, a+d, a+2 d, \ldots, a+23 d, a+24 d ; d$ being the common
difference.
$a+24 d=20 a \Rightarrow 19 a=24 d$
Sum of the lengths of the sides $=2100$
$a+(a+d)+\ldots+(a+24 d)=2100$
$25 a+d(1+2+\ldots 24)=2100$
$25 a+d\left[\frac{(2424+1}{2}\right]=2100$
$25 a+300 d=2100$
$25 \times \frac{24 d}{19}+300 d=2100$
$\frac{600 d}{19}+300 d=2100$
$\frac{6 d}{19}+3 \mathrm{~d}=21 \Rightarrow 63 \mathrm{~d}=19 \times 21 \Rightarrow \mathrm{~d}=19 / 3$.
$19 \mathrm{a}=\frac{24 \times 19}{3}=8 \times 19, \mathrm{a}=8$
Smallest side $=8 \mathrm{~cm}$
And the common difference $=19 / 3=6 \frac{1}{3} \mathrm{~cm}$.
11. (c) Interior and exterior angle are always supplementery i.e., interior angle + exterior angle $=180$
Their ratio is given 2:1
So that exterior angle of the polygon $=180 \times 1 / 3$
But sumof the exterior angle ofa polygon is always 360°
Therefore the no. of sides $=360 \% / 6=6$
12. (b) Let there be n side polygon, eachside $2 P / n$
$\mathrm{A}=\mathrm{n} \times$ area of triangle whose side is $2 \mathrm{P} / \mathrm{n}$ and altitude ' r '.
$A=n \times \frac{1}{2} \times 2 \frac{p}{n} \times r$
$\therefore r=A / P$
13. (b) Let n be number of sides of polygon.

Sum of the interior angles of a polygon of n sides
$=(n-2) \times \pi$
$n \times \frac{5 \pi}{6}=(n-2) \times \pi \Rightarrow n=12$
14. (c) Sum of the interior angle $=(n-2) 180^{\circ}$

So, sum of the interior angles of a six sides polygon $=6-2 \times 180^{\circ}=720$
sum of the interior angles of a eight sided polygon $=(8-2) \times 180^{\circ}=1080^{\circ}$ and
sum of the interior angles of a ten sided polygon.

$$
=(10-2) \times 180=1440^{\circ}
$$

