A PREMIER INSTITUTE FOR BANK PO/SSC/MCA/MBA-CAT ENTRANCE ACADEMY

POLYGON Assignment -1

Answersheet

1. (a), 2. (c), 3. (b), 4. (c), 5. (d), 6. (c), 7. (c), 8. (d), 9. (a), 10. (a), 11. (c), 12. (b), 13. (B), 14. (c)

1. Solution: (a)

Step 1: Write down the formula $(n - 2) \times 180^{\circ}$

Step 2: Plug in the values $(7 - 2) \times 180^{\circ} = 5 \times 180^{\circ} = 900^{\circ}$

Answer: The sum of the interior angles of a heptagon (7-sided) is 900°.

2. **Solution:** (c)

$$(n-2) \times 180^{\circ}$$

Step 1: Write down the formula

$$\frac{(8-2)\times180^{\circ}}{135^{\circ}}=135^{\circ}$$

Step 2: Plug in the values

Answer: Each interior angle of an otagon (8-sided) is 135°.

The answer is $180^{\circ} - 45^{\circ} = 135^{\circ}$.

A regular polygon has equal exterior angles of 72°.

3. (b) The sum of interior angles of a polygon of n sides is given by

$$(2n-4)\times\frac{\pi}{4}$$

$$(2n-4) \times \frac{\pi}{2} = 1620 \times \frac{\pi}{180}$$

$$(2n-4) = \frac{1620 \times 2}{180} = (2n-4) = \frac{3240}{180}$$

2n - 4 = 18

$$2n = 22$$
, $\Rightarrow n = 11$

4. (c) Let n be the number of sides of the polygon. Interior anle = 8×Exterior angles

$$\frac{(2n-4)\times\frac{\pi}{2}}{n}=8\times\frac{2\pi}{n}$$

5. Solution (d)

Each Interior angle of regular polygon = 2n-4.90 / n

Each external angle of regular polygon = 360 / n

By question,
$$2n-4.90 / n = 2.360 / n$$

After solving above question we get n = 6

6. **Solution (c):** Sum of Interior Angles in a Polygon = 180(n - 2)

Sum of Interior Angles in a Polygon = 180(5 - 2)

Sum of Interior Angles in a Polygon = 180(3)

Sum of Interior Angles in a Polygon = 540

Now you have x parts that make up this degree.

$$x = 2 + 3 + 3 + 5 + 5$$

x = 18

540/18 = The Degree of One Part

30 = The Degree of One Part

And the smallest angle has 2x so 2 time 30 equals to 60

degrees.

Therefore the smallest angle is 60 degrees.

7. Solution : (c)

Angle AOB is given by

angle (AOB) =
$$360^{\circ} / 6 = 60^{\circ}$$

Since OA = OB = 10 cm, triangle OAB is isosceles which gives

angle (OAB) = angle (OBA)

So all three <u>angles</u> of the triangle are equal and therefore it is an equilateral triangle. Hence

$$AB = OA = OB = 10 \text{ cm}.$$

8. Solution

- Let t be the size of angle AOB, hence $t = 360^{\circ} / 5 = 72^{\circ}$
- The polygon is regular and OA = OB. Let M be the midpoint of AB so that OM is perpendicular to AB. OM is the radius of the inscribed circle and is equal to 6 cm. Right angle trigonometry gives tan(t / 2) = MB / OM
- The side of the pentagon is twice MB, hence side of pentagon = 2 OM tan(t / 2) = 8.7 cm (answer rounded to two decimal places)

9. Solution (a)

 A dodecagon is a regular polygon with 12 sides and the central angle t opposite one side of the polygon is given by.

$$t = 360^{\circ} / 12 = 30^{\circ}$$

We now use the formula for the area when the side of the regular polygon is known

Area = $(1 / 4) n x^2 \cot (180^{\circ} / n)$

Set n = 12 and x = 6 mm

area = $(1/4)(12)(6 \text{ mm})^2 \cot(180^\circ/12)$

= 403.1 mm² (approximated to 1 decimal place).

10. Let the smallest side of the plygon be a

The largest side of the polygon = 20a

Since the polygon has 25 sides of the polygon are respectively

a, a + d, a + 2d,..., a + 23d, a + 24d; d being the common

difference.

$$a + 24d = 20a \Rightarrow 19a = 24d$$

Sum of the lengths of the sides =2100

$$a + (a + d) + ... + (a + 24d) = 2100$$

$$25a + d(1 + 2 + ... 24) = 2100$$

$$25a + d \left[\frac{(2424 + 1)}{2} \right] = 2100$$

$$25 \times \frac{24d}{19} + 300d = 2100$$

$$\frac{600d}{19} + 300d = 2100$$

$$\frac{6d}{19} + 3d = 21 \Rightarrow 63d = 19 \times 21 \Rightarrow d = 19 \ / \ 3.$$

$$19a = \frac{24 \times 19}{3} = 8 \times 19, a = 8$$

Smallest side = 8 cm

And the common difference =19/3 = $6\frac{1}{3}$ cm.

11. (c) Interior and exterior angle are always supplementery i.e., interior angle + exterior angle = 180

Their ratio is given 2:1

So that exterior angle of the polygon = $180 \times 1/3$

But sumof the exterior angle of a polygon is always 360°

Therefore the no. of sides $=360^{\circ}/6=6$

12. (b) Let there be n side polygon, eachside 2P/n

A=n×area of triangle whose side is 2P/n and altitude 'r'.

$$A = n \times \frac{1}{2} \times 2 \frac{p}{n} \times r$$

13. (b) Let n be number of sides of polygon.

Sum of the interior angles of a polygon of n sides = $(n-2) \times \pi$

$$n \times \frac{5\pi}{6} = (n-2) \times \pi \implies n = 12$$

14. (c) Sum of the interior angle = $(n-2)180^{\circ}$

So, sum of the interior angles of a six sides polygon $=6.2\times180^{\circ}=720$

sum of the interior angles of a eight sided polygon $= (8-2)\times180^{\circ}=1080^{\circ}$ and

sum of the interior angles of a ten sided polygon.

$$=(10-2)\times180=1440^{\circ}$$