CLASSES

PROBABILITY

Solution :

1. (b) When a natural no. is divided by 9 , the remainder may be 0 or 1 , or 2 or 3 .. or 8 .
So, $\mathrm{n}(\mathrm{S})=9$
E (the remainder is not an even no.)
$=\{1,3,5,7\}=4$
$\mathrm{P}(\mathrm{E})=\mathrm{n}(\mathrm{E}) / \mathrm{n}(\mathrm{S})=4 / 9$
Note : We assume zero (0) as even number.
2. (b) Girls \times B \times B $\times \mathbf{B} \times \mathbf{B} \times \mathbf{B} \times \mathbf{B} \times \boldsymbol{B} \times \mathbf{B} \times$

8 boys can be seated in a row in 8 ! Ways.
For 5 girls there are 9 places so that no two girls sit together.
So they can be seated in ${ }^{9} \mathrm{P}_{5}$ ways.
So that Total $={ }^{9} P_{5} \times 8!=\frac{9!}{4!} \times 8!$
3. (c) $\mathrm{N}(\mathrm{S})={ }^{12} \mathrm{C}_{3}=\frac{12 \times 11 \times 10}{3 \times 2}=220$

3 balls can be selected from 4 whtie and 3 black balls in
${ }^{7} C_{3}=\frac{7 \times 6 \times 5}{3 \times 2}=35$
So that $\mathbf{P}(\mathrm{E})=35 / 220=7 / 44$.
4. (d) $S=\{1,2,3, \ldots 24,25\}$

Event $\mathrm{E}=\{2,3,5,7,11,13,17,19,23\}$
So that $\mathrm{P}(\mathrm{E})=\mathrm{n}(\mathrm{E}) / \mathrm{n}(\mathrm{S})=9 / 25$
5. (d) For Abhinav, $\mathrm{n}(\mathrm{s})=5, \mathrm{n}(\mathrm{A})=4$;

So that $\mathrm{P}(\mathrm{A})=\mathrm{n}(\mathrm{A}) / \mathrm{n}(\mathrm{S})=4 / 5$
Similarly $\mathrm{P}(\mathrm{L})=3 / 4$ and $\mathrm{P}(\mathrm{K})=2 / 3$
And $\mathrm{P}(\mathrm{A} \cap \mathrm{L} \cap \mathrm{K})=\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{L}) \cdot \mathrm{P}(\mathrm{K})$
$=\frac{4}{5} \times \frac{3}{4} \times \frac{2}{3}=\frac{2}{5}$
(So that all are independent even)
6. (a) If we treat same sports player as one unit then total number is $1+1+1=3$, they can sit in 3! Ways. Now players amon themselves can sit in n ! ways. Where n-number of players in each sports.
So that Total arrangement 3!7!6!5!
7. (c) In two throws of dice, $n(S)=6 \times 6=36$

Let $\mathrm{E}=$ event of getting sum ' 9 '
$=\{(3,6)(6,3)(4,5)(5,4))$
So that $\mathrm{P}(\mathrm{E})=\mathrm{n}(\mathrm{E}) / \mathrm{n}(\mathrm{S})=4 / 36=1 / 9$
8. (b) $\mathrm{n}(\mathrm{S})=6 \times 6=36$.
$\mathrm{E}=\{(1,1),(1,2),(1,4),(1,6),(2,1),(2,3)(2,5),(3,2)(3,4), 4,1)$, $(4,3),(5,2),(5,6),(6,1),(6,5)\}$
So that $\mathrm{n}(\mathrm{E})=15$.
So that $\mathrm{P}(\mathrm{E})=\frac{\mathrm{n}(\mathrm{E})}{\mathrm{n}(\mathrm{S})}=\frac{15}{36}=\frac{5}{12}$
9. (a) We have 8 places which can be arranged in $8!/ 2$! Ways. Out of 8 places, we have 4 odd places and 4 even places. We have altogether 3 vowels which can be arranged in ${ }^{4} C_{3}=4$! ways. Having fixed up the vowels in even places, we will be left with 5 places, namely 4 odd and 1 even, after fixing the 3 vowels. In these 5 places we have to fix 5 consinants, which can be done in $5!/ 2!$ Ways.
Required probability $=\frac{4!\times 5!}{8!}=1 / 14$
10. (c) Ward A Ward B Ward C
$4 \quad 5 \quad 8$
For ward A we have to choose 4 out of 20 and then forward B, 5 out of remaining 16 and then for ward C, 8 our of remaining 11 .
Required number $={ }^{20} \mathrm{C}_{4} \times{ }^{16} \mathrm{C}_{5} \times{ }^{11} \mathrm{C}_{8}$
11. (a) P (the vowels are together) $=\frac{\mathrm{n}(\mathrm{E})}{\mathrm{n}(\mathrm{S})}=\frac{3!\times 3!}{5!}=\frac{3}{10}$

Required probability $=1-\frac{3}{10}=\frac{7}{10}$
12. (c) $\mathrm{n}(\mathrm{S})=5+10=15$
$\mathrm{N}(\mathrm{E})=5$
$\mathrm{P}(\mathrm{E})=\mathrm{n}(\mathrm{E}) / \mathrm{n}(\mathrm{S})=5 / 15=1 / 3$
13. (d) $\mathrm{n}(\mathrm{S})={ }^{25} \mathrm{C}_{3}=\frac{25 \times 24 \times 23}{3 \times 2 \times 1}=2300$
$n(E)={ }^{10} C_{1} \times{ }^{15} C_{2}=10 \times\left(\frac{15 \times 14}{2 \times 1}\right)=10 \times 105=1050$
So that $\mathrm{P}(\mathrm{E})=\frac{\mathrm{n}(\mathrm{E})}{\mathrm{n}(\mathrm{S})}=\frac{1050}{2300}=\frac{21}{46}$
14. (b) Girls $\times \mathbf{B} \times \mathbf{B} \times$

8 boys can be seated in a row in 8 ! Ways.
For 5 girls there are 9 places so that no two girls sit together.
So they an be seated in ${ }^{9} \mathrm{P}_{5}$ ways.

$$
\text { Total }={ }^{9} P_{5} \times 8!=\frac{9!}{4!} \times 8!
$$

15. (c) $\mathrm{n}(\mathrm{S})={ }^{12} \mathrm{C}_{3}=\frac{12 \times 11 \times 10}{3 \times 2}=220$

3 balls can be selected from 4 white and 3 black balls in ${ }^{7} C_{3}$ ways. So that $n(E)={ }^{7} C_{3}=\frac{7 \times 6 \times 5}{3 \times 2}=35$
So that $\mathrm{P}(\mathrm{E})=\frac{35}{220}=\frac{7}{44}$
16. (c); The word contains 1M, 1A, 2T, 1E, 1R

So that Required number of ways
$\frac{6!}{(1!)(1!)(2!)(1!)(1!)}=\frac{720}{2}=360$
17. (b) After solution $n(S)=6 \times 6=36$
$\mathrm{n}(\mathrm{E})=27$
$\mathrm{P}(\mathrm{E})=27 / 36=3 / 4$
18. (a) Total number of books $=8+7+6=21$

Let E be the event that the picked book is neither rin Hindi nor in urdu or the event that the book picked is in English.
$\mathrm{n}(\mathrm{E})=78$
so that $p(\mathrm{E})=7 / 21$.
19. (c) $n(S)=$ Number of way of sitting 12 persons at round tale is (12-1) !=11!
Tree particular persons sits together, so we take these three persons as one so number of persons $=12-3+1=10$
Tey can sit round a table in ($10-1$)! $=9$!
Three persons sit in 3 ways among themselves
So that $\mathrm{n}(\mathrm{E})=9!\times 3$!
$\mathrm{P}(\mathrm{E})=\frac{\mathrm{n}(\mathrm{E})}{\mathrm{n}(\mathrm{S})}=\frac{9!\times 3!}{11!}=\frac{3}{55}$
20. (c) $\times B \times B \times$

9 boys can sit in 9 ! Ways. For 7 girls there are 10 place, so
girls can sit in ${ }^{10}{ }^{7}$, ways.
So that total number of ways $={ }^{10} p_{7} \times 9!=\frac{10!}{3!} \times 9$!
21. (b) $n(S)={ }^{21} C_{2}=210$
$\mathrm{n}(\mathrm{E})={ }^{7} \mathrm{C}_{2}+{ }^{6} \mathrm{C}_{2}+{ }^{8} \mathrm{C}_{2}=21+15+28=64$
So that $\mathrm{P}(\mathrm{E})=64 / 210=32 / 105$.
22. (a) Number of girls $=1$

Number of boys $=4$.
Number of ways $={ }^{5} C_{1} \times{ }^{7} C_{4}=5 \times 35=175$
23. (c) The probability of A's losing any single game $=1-1 / 3=2 / 3$
And the probability of A's losin al the 3 games $=\left(\frac{2}{3}\right)^{3}=\frac{8}{27}$
The probability of A's winning at least one game
$=1-\frac{8}{27}=\frac{19}{27}$

