visit us : www.guptaclasses.com e-mail: alokgupta919@gmail.com BANK P.O. & SSC ENTRANCE ACADEMY

NDA TEST SERIES-1

Let α, γ be the roots of A x² - 4x + 1 = 0 and β, δ be the roots of Bx² - 6x + 1 = 0. If α, β, γ, δ are in HP, then what are the values of A and B respectively ?

 (a) 3, 8
 (b) -3, -8
 (c) 3, -8
 (d) -3, 8

A PREMIER INSTITUTE FOR MBA-CAT/MC

2. Under which one of the following condition does the system of equations

kx + y + z = k - 1x + ky + z = k - 1x + y + kz = k - 1have no solution ?

(a) k = 1 (b) $k \neq -2$ (c) k = 1 or k = -2 (d) k = -2

3. If the sides of a triangle are 6 cm, 10 cm and 14 cm, then what is the largest angle included by the sides ?
(a) 90°
(b) 120°

4. If X and Y are any two non-empty sets, then what is (X - Y)' equal to?
(a) X'-Y'
(b) X'-Y

(a) X - f	(D) X ∩ Y
(c) $X' \cup Y$	(d) $X - Y'$

- 5. For finding the area of a triangle ABC, which of the following entities are required ?
 - (a) Angles A, B and side a
 - (b) Angles A, B and side b
 - (c) Angles A, B and side c
 - (d) Either (a) or (b) or (c)

6. Let
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 and $B = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$ where a, b are natural

numbers, then which one of the following is correct ?

- (a) There exist more than one but finite number of B's such that AB = BA
- (b) There exists exactly one B such that AB = BA
- (c) There exist infinitely many B's such that AB = BA
- (d) There cannot exist any B such that AB = BA

7. Consider a matrix $M = \begin{bmatrix} 2 & 1 & 0 \\ 3 & 1 & k \end{bmatrix}$ and the following

statements

Statement A : Inverse of M exists. **Statement B** : $k \neq 0$

Which one of the following in respect of the above matrix and statement is correct?

(a) A implies B, but B does not imply A(b) B implies A, but A does not imply B

- (c) Neither A implies B nor B implies A
- (d) A implies B as well as B implies A
- 8. If 2^x + 3^y = 17 and 2^{x+2} 3^{y+1} = 5, then what is the value of x?
 (a) 3
 (b) 2
 - (c) 1 (d) 0
- 9. If P (32, 6) = kC (32, 6), then what is the value of k?
 (a) 6
 (b) 32
 (c) 120
 (d) 720
- **10.** What is $(\sqrt{3} + i)/(1 + \sqrt{3}i)$ equal to ?

(a) $1 + i$	(b) 1 – <i>i</i>		
(c) $\sqrt{3}(1-i)/2$	(d) $(\sqrt{3} - i)/2$		

- 11. What is the binary equivalent of decimal number $(0.8125)_{10}$? $(a) (0.1101)_2$ (b) (0.1001)₂ $(c) (0.1111)_2$ (d) (0.1011)₂ y x y + z12. If |z + y| = 0, then which one of the following is x z z + xcorrect ? (a) Either x + y = z or x = y(b) Either x + y = -z or x = z(c) Either x + z = y or z = y(d) Either z + y = x or x = y**13.** What is the value of *k*, if $k \ b + c \ b^2 + c^2$ $k c + a c^{2} + a^{2} = (a - b)(b - c)(c - a)$? $k a+b a^2+b^2$ (a) 1 (b) -1 (c) 2(d) 0 14. What is the number of proper subsets of a given finite set with n elements? (b) 2n - 2(a) 2n - 1(d) $2^n - 2$ (c) $2^n - 1$ **15.** If (x + a) is a factor of both the quadratic polynomials $x^{2} + px + q$ and $x^{2} + lx + m$, where p, q, l and m are constants, then which one of the following is correct? (a) $a = (m - q)/(l - p) \ (l \neq p)$ (b) $a = (m+q)/(l+p) (l \neq -p)$ (c) $l = (m - q) / (a + p) (a \neq p)$ (d) $p = (m - q) / (a - l) (a \neq l)$ 16. If A, B and C are three finite sets, then what is $[(A \cup B) \cap C]'$ equal to ? (a) $A' \cup B' \cap C'$ (b) $A' \cap B' \cap C'$ (c) $A' \cap B' \cup C'$ (d) $A \cap B \cap C$ 17. What is the value of $tan(-1575^\circ)$? (a) 1 (b) 1/2(d) -1 (c) 0 **18.** For which acute angle θ , $\csc^2 \theta = 3\sqrt{3} \cot \theta - 5$? (a) (b) 12 3 π (c) (d) **19.** If $\tan^2 \theta = 2 \tan^2 \phi + 1$, then which one of the following is correct ? (a) $\cos(2\theta) = \cos(2\phi) - 1$ (b) $\cos(2\theta) = \cos(2\phi) + 1$ (c) $\cos(2\theta) = [\cos(2\phi) - 1]/2$ (d) $\cos(2\theta) = [\cos(2\phi) + 1]/2$ 20. Which one of the following is correct in respect of the matrix 0 0 -13 0 0 ? A =-1 -1 0 0
 - (a) A^{-1} does not exist (b) A = (-1)I
- (c) A is a unit matrix (d) $A^2 = I$ 21. The formula $\sin^{-1} \{2x(1-x^2)\} = 2\sin^{-1} x$ is true for all values of x lying in the interval (a) [-1, 1] (b) [0, 1](c) [-1, 0] (d) $[-1/\sqrt{2}, 1/\sqrt{2}]$

A	PREMIER INSTIT		visit us : www.guptaclasses.com e-mail: alokgupta9319@gmail.com
22.	What is the value of 1 – s (a) 1/8 (c) 5/8	in 10° sin 50° sin 70° ? (b) 3/8 (d) 7/8	36. Which one of the following vectors of magnitude $\sqrt{51}$ makes equal angles with three vectors
23.		a triangle are equal to 5 / 13 and	$\vec{a} = \frac{\vec{i} - 2\hat{j} + 2\hat{k}}{3}, \vec{b} = \frac{-4\hat{i} - 3\hat{k}}{5} \text{ and } \vec{c} = \hat{j}?$ (a) $5\hat{i} - \hat{j} - 5\hat{k}$ (b) $5\hat{i} + \hat{j} + 5\hat{k}$ (c) $-5\hat{i} - \hat{j} + 5\hat{k}$ (d) $5\hat{i} + 5\hat{j} - \hat{k}$
24.		ngle of 1000° from its initial e will be situated in which one of (b) Second quadrant (d) Fourth quadrant	37. If $ \vec{a} = 2, \vec{b} = 5$ and $ \vec{a} \times \vec{b} = 8$, then what is the value of $\vec{a} \cdot \vec{b}$? (a) 4 (b) 6 (c) 8 (d) 10
25.	One radian is approxima following ? (a) 90°	itely equal to which one of the (b) 180°	38. If $ \vec{a} + \vec{b} = \vec{a} - \vec{b} $, then which one of the following is correct? (a) \vec{a} is parallel to \vec{b}
26.	smallest positive values o (a) 45°, 30°	(b) 30°, 45°	(b) \vec{a} is perpendicular to \vec{b} (c) $\vec{a} = \vec{b}$ (d) Both \vec{a} and \vec{b} are unit vectors
27.	(c) 15°, 60° If sin $A = 1/\sqrt{5}$, cos $B = 3/3$ angles, then what is $(A + (a) \pi/6)$		39. If $\vec{a} = \hat{i} - 2\hat{j} + 5\hat{k}$, $\vec{b} = 2\hat{i} + \hat{j} - 3\hat{k}$, then what is $(\vec{b} - \vec{a}) \cdot (3\vec{a} + \vec{b})$ equal to ?
28.	(a) $\pi/3$ (c) $\pi/3$ If $\sin^{-1}\left(\frac{2a}{1+a^2}\right) - \cos^{-1}\left(\frac{2a}{1+a^2}\right)$	(d) $\pi/2$	(a) 106 (b) -106 (c) 53 (d) -53 40. Let $\vec{a}, \vec{b}, \vec{c}$ be the position vectors of points A, B, C
	then what is the value of (a) a/b (c) b/a	· ·	respectively. Under which one of the following conditions are the points A, B, C collinear? (a) $\vec{a} \times \vec{b} = \vec{0}$
29.		$\theta + \cos \theta$ are satisfied by which ations ? (b) $y^2 + 2x = 1$	(b) $\vec{\mathbf{b}} \times \vec{\mathbf{c}}$ is parallel to $\vec{\mathbf{a}} \times \vec{\mathbf{b}}$ (c) $\vec{\mathbf{a}} \times \vec{\mathbf{b}}$ is perpendicular to $\vec{\mathbf{b}} \times \vec{\mathbf{c}}$ (d) $(\vec{\mathbf{a}} \times \vec{\mathbf{b}}) + (\vec{\mathbf{b}} \times \vec{\mathbf{c}}) + (\vec{\mathbf{c}} \times \vec{\mathbf{a}}) = \vec{0}$ 4t. If $\vec{\mathbf{a}} = \hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}$, $\vec{\mathbf{b}} = \hat{\mathbf{i}} - \hat{\mathbf{j}} + \hat{\mathbf{k}}$ and $\vec{\mathbf{c}} = \hat{\mathbf{i}} + \hat{\mathbf{j}} - \hat{\mathbf{k}}$, then what
30.	then walks 1 km towards elevation is 60°. What is t (a) 1/2 km	ation of a balloon to be 30°. He, s the balloon and finds that the the height of the balloon ? (b) $\sqrt{3} / 2$ km	is $\vec{a} \times (\vec{b} + \vec{c}) + \vec{b} \times (\vec{c} + \vec{a}) + \vec{c} \times (\vec{a} + \vec{b})$ equal to? (a) $2\hat{i} + 3\hat{j} - \hat{k}$ (b) $2\hat{i} - 3\hat{j} - \hat{k}$
31.	 (c) 1/ 3 km The points (1, 3, 4), (-1, 6) the vertices of a (a) rhombus (c) parallelogram 	(d) 1 km (,10), (-7, 4, 7) and (-5, 1, 1) are (b) rectangle (d) square	 (c) 3 i + j + k (d) 0 42. If A, B, C are any three arbitrary events, then which one of the following expressions shows that both A and B occur but not C? (a) A ∩ B ∩ C (b) A ∩ B ∩ C
32.	· ·	(c) square planes passing through three (c) 1 (d) 0	 (c) A ∩ B ∩ C (d) A ∩ B ∩ C 43. The average sales and standard deviation of sales for four months for a company are as follows
33.		(b) $\cos^{-1}(1/7)$ (c) $\sin^{-1}(1/7)$	Month 1 Month 2 Month 3 Month 4Average sales30578228Standard deviation2342of sales2342
34.	What is the eccentricity o equal to one-half of its mit (a) $1/4$ (c) $\sqrt{3}/4$	f an ellipse, if its latusrectum is nor axis ? (b) $1/2$ (d) $\sqrt{3}/2$	During which month are the sales most consistent ? (a) Month 1 (b) Month 2 (c) Month 3 (d) Month 4 44. By Baye's theorem, which one of the following probabilities is calculated ?
35.	Under what condition doe $x^{2} + y^{2} + z^{2} + 2ux + 2uy$ sphere ? (a) $u^{2} + v^{2} + w^{2} = d^{2}$ (c) $u^{2} + v^{2} + w^{2} < d$	(b) $u^{2} + v^{2} + w^{2} > d$	 (a) Prior probability (b) Likelihood probability (c) Posterior probability (d) Conditional probability Given that P(A) = 1/3, P(B) = 1/4, P(A / B) = 1/6, then what is P(B / A) equal to ? (a) 1/4 (b) 1/8 (c) 3/4 (d) 1/2

		ASSI	visit us : www.guptaclasses.com e-mail: alokgupta9319@gmail.com
<u>A</u>	PREMIER INSTITUTE FOR MBA-CAT/MC	A/BA	NK P.O. & SSC ENTRANCE ACADEMY
4 6.	If A and B are two mutually exclusive and exhaustive events with $P(B) = 3P(A)$, then what is the value of $P(B)$? (a) $3/4$ (b) $1/4$		(a) $(-\infty, \infty)$ only(b) $(0, \infty)$ only(c) $(-\infty, 0) \cup (0, \infty)$ only(d) $(-\infty, 0)$ only
	(c) 1/3 (d) 2/3	58.	Let $y(x) = ax^n$ and δy denote small change in y . What is
47.	Two dice are thrown. What is the probability that the sum		limit of $\frac{\delta y}{\delta x}$ as $\delta x \to 0$?
	of the faces equals or exceeds 10 ? (a) 1/12 (b) 1/4		(a) 0 (b) 1
	(c) 1/3 (d) 1/6		(c) anx^{n-1} (d) $ax^n \log(ax)$
48 .	For a binomial distribution $B(n, p)$, $np = 4$ and variance $npq = 4/3$. What is the probability $P(x \ge 5)$ equal to ?	59.	What is the solution of the differential equation $\frac{dy}{dy} = e^{x - y} (e^{y - x} - e^{y})?$
	(a) $(2/3)^6$ (b) $2^{5}/3^6$		dx
	(a) $(2/3)$ (b) $2/3$ (c) $(1/3)^6$ (d) $2^6/3^6$		(a) $y = x - e^{x} + c$ (b) $y = x + e^{x} + c$
			(c) $y = e^{x-y} - e^y + c$ (d) None of these
49.	The harmonic mean of two numbers is 21.6. If one of the numbers is 27, then what is the other number ?	60.	What is the area of the triangle formed by the lines
	(a) 16.2 (b) 17.3		y - x = 0, y + x = 0, x = c? (a) $c/2$ (b) c^2 (c) $2c^2$ (d) $c^2/2$
	(c) 18 (d) 20		
50.	are given below	61.	If A and B are subsets of a set X, then what is $\{A \cap (X - B)\} \cup B$ equal to? (a) $A \cup B$ (b) $A \cap B$
	A 71 56 55 75 54 49		(c) A (d) B
	B 55 74 83 54 38 52	62.	The total number of subsets of a finite set A has 56 more
	Which one of the following statements is most appropriate?		elements, then the total number of subsets of another
	(a) The average scores of A and B are same but A is		finite set B. What is the number of elements in the set A? (a) 5 (b) 6 (c) 7 (d) 8
	consistent	63	(a) 5 (b) 6 (c) 7 (d) 8 What is the smallest natural number n such that $n!$ is
	 (b) The average scores of A and B are not same but A is consistent 	03.	(a) 9 (b) 11 (c) 33 (d) 99
	(c) The average scores of A and B are same but B is consistent	64.	Which one of the following is correct ?
	(d) The average scores of A and B are not same but B is		(a) $A \times (B - C) = (A - B) \times (A - C)$
	consistent		(b) $A \times (B - C) = (A \times B) - (A \times C)$
51.	In a factory, there are 30 men and 20 women employees.		(c) $A \cap (B \cup C) = (A \cap B) \cup C$
	If the average salary of men is Rs 4050 and the average salary of all the employees is Rs 3550, then what is the		(d) $A \cup (B \cap C) = (A \cup B) \cap C$
	average salary of women?	65.	In an examination out of 100 students, 75 passed in
·	(a) Rs 3800 (b) Rs 3300		English, 60 passed in Mathematics and 45 passed in both
	(c) Rs 3000 (d) Rs 2800		English and Mathematics.What is the number of students passed in exactly one of the two subjects ?
52.	What is the standard deviation of numbers 7, 9, 11, 13, 15?		(a) 45 (b) 60 (c) 75 (d) 90
	(a) 2.2 (b) 2.4	66.	Let $R = \{x \mid x \in N, x \text{ is a multiple of 3 and } x \le 100\}$
	(c) 2.6 (d) 2.8		$S = \{x \mid x \in N, x \text{ is a multiple of 5 and } x \le 100\}$
53.	When a card is drawn from a well shuffled pack of cards, what is the probability of getting a Queen ?		What is the number of elements in $(R \times S) \cap (S \times R)$?
	(a) 2/13 (b) 1/13		(a) 36 (b) 33 (c) 20 (d) 6
	(c) 1/26 (d) 1/52	67.	If $A = \{a, b, c\}$ and $R = \{(a, a), (a, b), (b, c), (b, b), (c, c), (c, a)\}$ is a binary relation on A, then
54.	If the monthly expenditure pattern of a person who earns		which one of the following is correct?
	a monthly salary of Rs 15000 is represented in a pie diagram, then the sector angle of an item on transport		(a) R is reflexive and symmetric, but not transitive
	expenses measures 15°. What is his monthly expenditure		(b) R is reflexive and transitive, but not symmetric
	on transport ?		(c) <i>R</i> is reflexive, but neither symmetric not transitive
	(a) Rs 450	60	(d) <i>R</i> is reflexive, symmetric and transitive f(x,y) = f(x,y) by $f(x,y) = f(x,y)$
	(b) Rs 625 (c) Rs 675	68.	If $\log_{10}(x+1) + \log_{10} 5 = 3$, then what is the value of x? (a) 199 (b) 200 (c) 299 (d) 300
	(d) Cannot be computed from the given data		
		69.	What is the value of $2\log_8 2 - \frac{\log_3 9}{3}$?
55.	If $\sum_{i=1}^{n} (x_i - 2) = 110$, $\sum_{i=1}^{n} (x_i - 5) = 20$, then what is the	•	(a) 0 (b) 1 (c) 8/3 (d) 16/3
	mean ?	70.	Which one of the following is one of the roots of the
	(a) 11/2 (b) 2/11		equation $(b - c)x^{2} + (c - a)x + (a - b) = 0$?
	(c) 17/3 (d) 17/9		(a) $(c-a)/(b-c)$ (b) $(a-b)/(b-c)$
56,	Let $f: R \to R$ be a function defined as $f(x) = x x $; for		(c) $(b-c)/(a-b)$ (d) $(c-a)/(a-b)$
	each $x \in R$, R being the set of real numbers. Which one of the following in accord 2.	71.	What is the value of x satisfying the equation \int_{-3}^{3}
	the following is correct ? (a) f is one-one but not onto		$16\left(\frac{a-x}{a+x}\right)^3 = \frac{a+x}{a-x}?$
	(a) f is one one but not onto(b) f is onto but not one-one		
	(c) f is both one-one and onto		(a) $a/2$ (b) $a/3$ (c) $a/4$ (d) 0
	(d) f is neither one-one nor onto	72.	If α , β are the roots of the equation
57.	What is the set of all points, where the function		$2x^2 - 2(1 + n^2)x + (1 + n^2 + n^4) = 0$, then what is the
	$f(x) = \frac{x}{1+ x }$ is differentiable ?		value of $\alpha^2 + \beta^2$?
	1 + x		(a) $2n^2$ (b) $2n^4$ (c) 2 (d) n^2
and the second second	Contor I. Agarson Plaza, Noar Nai Sarak, Garb Poad, Moorut		

CUPTA Center I. Agarsen Plaza, Near Nai Sarak, Garh Road, Meerut CLASSES Center II. Ist Floor, Utsav Complex, Shivaji Road, Near N.A.S. College, Meerut

The first of a geometric progression with positive common ratio are 8 and 80 respectively, then what is the factors (R). You are to examine these two statements, one labeliate the statements, one labeliate the statements, one labeliate the statements of the terms of (A) and B cespectively. The what is the decimal equivalent of (10, 101), 7 (a) (3) (5) (5) (5) (a) (b) (5) (5) (a) (b) (5) (c) (a) (b) (c) (c) (5) (c) (c) (5) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	A	PREMIER INST	TUTE FOR MBA-CAT/M	visit us : www.guptaclasses.com e-mail: alokgupta9319@gmail.com CA/BANK P.O. & SSC ENTRANCE ACADEMY
(a) $(B^{n-4}A(C)/A^{n-1}$ (b) $(B^{n-2}-2A(C)/A^{n-1})$ (c) $(2A - B^{n})/A^{2-1}$ (c) $(B^{n-2}-2A(C)/A^{n-1})$ (c) $(2A - B^{n-1})/A^{n-1}$ (c) $(B^{n-2}-2A(C)/A^{n-1})$ (c) $(2A - B^{n-1})/A^{n-1}$ (c) $(B^{n-2}-1)/A^{n-1}$ (c) $(1-2A^{n-1})/A^{n-1}$ (c) $(1-2A^{n-1})/A^{n-1}$ (c) $(1+x+2A^{n-1})/A^{n-1}$ (c) $(1-2A^{n-1})/A^{n-1}$ (c) $(1+x+2A^{n-1})/A^{n-1}$ (c) $(1-2A^{n-1})/A^{n-1}$ (c) $(1-2A^{n-1})/A^{n-1}$ (c)	73 .	The roots of $Ax^2 + Bx + x^2 + px + q = 0$ to be r^2 .	C = 0 are r and s. For the roots c and s^2 , what must be the value of	
(a) 4 Consider the following statements in respect of symmetric matrices A and B (b) 4 Consider the following statements in respect of symmetric for which is the number of words formed from the letters of the word (DKE's of latter the vowels and consonant alternate? (a) 4 (b) 8 (c) 12 (c) 100 more of these (b) 12 (c) 12 (c) 100 more of these (c) 12 (c) 12 (c) 12 (c) 100 more of these (c) 12 (c) 12 (c) 12 (c) 100 more of these (c) 12 (c) 12 (c) 12 (c) 100 more of these (c) 12 (c) 12 (c) 12 (c) 110 more of the two that is: (c) 12 (c) 12 (c) 12 (c) 110 more of these the value of the target to the curve at (c) 12 (c) 12 (c) 12 (c) 110 more of these the value of the target to the curve at (c) 12 (c) 12 (c) 12 (c) 110 more of the target to the curve at (c) 12 (c) 12 (c) 12 (c) 110 more of the target to the curve at (c) 12 (c) 12 (c) 12 (c) 110 more of the target to the curve at (c) 12 (c) 12 (c) 12 (c) 110 more of the target to the curve at (c) 12 (c) 12 (c) 12 (c) 11 (c) 12 (c)				
(a) 4 Consider the following statements in respect of symmetric matrices A and B (b) 4 Consider the following statements in respect of symmetric for which is the number of words formed from the letters of the word (DKE's of latter the vowels and consonant alternate? (a) 4 (b) 8 (c) 12 (c) 100 more of these (b) 12 (c) 12 (c) 100 more of these (c) 12 (c) 12 (c) 12 (c) 100 more of these (c) 12 (c) 12 (c) 12 (c) 100 more of these (c) 12 (c) 12 (c) 12 (c) 100 more of these (c) 12 (c) 12 (c) 12 (c) 110 more of the two that is: (c) 12 (c) 12 (c) 12 (c) 110 more of these the value of the target to the curve at (c) 12 (c) 12 (c) 12 (c) 110 more of these the value of the target to the curve at (c) 12 (c) 12 (c) 12 (c) 110 more of the target to the curve at (c) 12 (c) 12 (c) 12 (c) 110 more of the target to the curve at (c) 12 (c) 12 (c) 12 (c) 110 more of the target to the curve at (c) 12 (c) 12 (c) 12 (c) 110 more of the target to the curve at (c) 12 (c) 12 (c) 12 (c) 11 (c) 12 (c)				$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Table The word of Correct of the vortex of the word of Correct of the vortex of vortex of the vortex of vortex of the vortex of	74.	(a) 9	(b) 5	
Which of the above statement(s) is/are correct? (a) 12 (b) 8 (c) 12 (c) 10 None of these (c) 12 (c) 14 and 2 (c) 1458 (c) 14 estimation of the first two terms and the sum of the first four terms of a geometric progression with pairs (c) 56 (25) (c) 4 (c) 1458 (c) 56 (25) (c) 4 (c) 2 (c) 14 (c) 2 (c) 56 (c) 4 (c) 2 (c) 14 (c) 2 (c) 56 (c) 4 (c) 2 (c) 14 (c) 2 (c) 14 (c) 2 (c) 56 (c) 4 (c) 2 (c) 14 (c) 2 (c) 14 (c) 2 (c) 56 (c) 4 (c) 2 (c) 14 (c) 10 (c) 1	75.	What is the number of	words formed from the letters a	matrices A and B
(c) 12 (d) None of these (c) 12 (d) None of these (f) the sum of the first two terms and the sum of the first four terms of a geometric progression with positive common ratio are 8 and 80 respectively, then what is the (a) 88 (b) 243 (c) 486 (d) 1458 (c) 56.525 ₁₀ (c) (55.525 ₁₀ (c) (56.525 ₁₀ (d) (5.525 ₁₀ (c) (56.525 ₁₀ (d) (5.525 ₁₀ (c) (56.525 ₁₀ (d) (5.555 ₁₀ (f) $1 \pi x > 1$ and $\log_2 x$, \log		alternate ?		•••••••••••••••••••••••••••••••••••••••
16. If the sum of the first row terms and the sum of the first four terms of a geometric progression with positive comments of a geometric progression with positive comments of a geometric progression with positive comments of the comm				
77. What is the decimal equivalent of (101.101) ₂ ? (a) $(5.25)_{10}$ (b) $(5.55)_{10}$ (c) $(5.625)_{10}$ (c) $(4$ (d) 2 (a) 9 (b) 8 (c) 4 (d) 2 78. What is the term independent of x in the expansion of ($1 + x + 2x^3$) $\left(\frac{3x^2}{2} - \frac{1}{3x}\right)^2$? 79. What is the term independent of x in the expansion of ($1 + x + 2x^3$) $\left(\frac{3x^2}{2} - \frac{1}{3x}\right)^2$? 79. What is the term independent of x in the expansion of ($1 + x + 2x^3$) $\left(\frac{3x^2}{2} - \frac{1}{3x}\right)^2$? 70. What is the term independent of x in the expansion 71. The term independent of x in the expansion 72. The term independent of x in the expansion 73. What is the entimetic mean of first five terms? (a) $1 - 12$ 73. What is the entimetic mean of first five terms? (a) $4 + 2r$ (b) ar^2 (c) $a(x^5 - 1) / (r - 1)$ (d) $a(x^5 - 1) / [5(r - 1)]$ 74. If $2x = 3 + 5i$, then what is the value (c) $2x^2 + 2x^2 - 7x + 72?$ (a) $4 + (b) - 4$ (c) 8 (d) $- 8$ 75. If $A = \begin{bmatrix} 3 & 2\\ 1 & 4 \end{bmatrix}$, then what is A(adj A) equal to ? (a) $\begin{bmatrix} 0 & 10\\ 10 & 1 \end{bmatrix}$ (b) $\begin{bmatrix} 10 & 0\\ 1 & 0\\ 1 & 0 & 0 \end{bmatrix}$ 76. What is the inverse of $\begin{bmatrix} 0 & 0 & 1\\ 0 & 10\\ 1 & 0 & 0 \end{bmatrix}$ 76. What is the inverse of $\begin{bmatrix} 0 & 0 & 1\\ 0 & 10\\ 1 & 0 & 0 \end{bmatrix}$ 77. What is the inverse of $\begin{bmatrix} 0 & 0 & 1\\ 0 & 10\\ 1 & 0 & 0 \end{bmatrix}$ 77. What is the inverse of $\begin{bmatrix} 0 & 0 & 1\\ 0 & 1\\ 1 & 0 & 0 \end{bmatrix}$ 78. What is the inverse of $\begin{bmatrix} 0 & 0 & 1\\ 0 & 1\\ 1 & 0 & 0 \end{bmatrix}$ 77. The term of the interm is the value (c) 78. Assertion (A) : $\left(\frac{-1 + \sqrt{-3}}{2}\right)^{2p} + \left(\frac{-1 - \sqrt{-3}}{2}\right)^{2p} = -1$ 78. Assertion (A) : $\left(\frac{-1 + \sqrt{-3}}{2}\right)^{2p} + \left(\frac{-1 - \sqrt{-3}}{2}\right)^{2p} = -1$ 79. Assertion (A) : $\left(\frac{-1 + \sqrt{-3}}{2}\right)^{2p} + \left(\frac{-1 - \sqrt{-3}}{2}\right)^{2p} = -1$ 70. Assertion (A) : $\left(\frac{-1 + \sqrt{-3}}{2}\right)^{2p} + \left(\frac{-1 - \sqrt{-3}}{2}\right)^{2p} = -1$ 70. Assertion (A) : $\left(\frac{-1 + \sqrt{-3}}{2}\right)^{2p} + \left(\frac{-1 - \sqrt{-3}}{2}\right)^{2p} = -1$ 71. The dual probability is graved by 72. The term is the term is the value of the following is correct? 72. The term is the term is the value of the following is correct? 73. Assertion (A) : $\left[-1$	76.	If the sum of the first t four terms of a geor common ratio are 8 and 6th term ?	wo terms and the sum of the firs netric progression with positive 1 80 respectively, then what is the	Directions (Q. 85-90) : The following six items consists of two statements, one labelled the Assertion (A) and the other labelled the Reason (R). You are to examine these two statements carefully and decide if the Assertion (A) and Reason (R) are individually true and if so, whether the reason is a correct
78. If $x > 1$ and $\log_2 x$, $\log_2 x, \log_3 x, $	77 .	What is the decimal equal $(a) (5.225)_{10}$	uvalent of $(101.101)_2$? (b) $(5.525)_{10}$ (d) $(5.65)_2$	explanation of the Assertion. Select your answer to these items using the codes given below. Codes :
(a) $y = (x)^{1/3}$ (b) $y = (x)^{1/3}$ (c)	78.	If $x > 1$ and $\log_2 x$, $\log_3 x$		of A
(a) 1/3 (b) 19/54 (c) 1/4 (c) No such term exists in the expansion 80. In a geometric progression with first term a and common ratio r, what is the arithmetic mean of first five terms? (a) $a + 2r$ (b) ar^2 (c) $a(r^5 - 1)/(r - 1)$ (d) $a(r^5 - 1)/[5(r - 1)]$ 81. If $2x = 3 + 5i$, then what is the value (c) (a) 4 (b) -4 (c) 8 (d) -8 82. If $A = \begin{bmatrix} 3 & 2\\ 1 & 4 \end{bmatrix}$, then what is A(adj A) equal to ? (a) $\begin{bmatrix} 0 & 10\\ 10 & 0 \end{bmatrix}$ (b) $\begin{bmatrix} 10 & 0\\ 0 & 10 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 10\\ 10 & 1 \end{bmatrix}$ (d) $\begin{bmatrix} 10 & 1\\ 1 & 10 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 10\\ 10 & 1 \end{bmatrix}$ (d) $\begin{bmatrix} 10 & 1\\ 1 & 10 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 10\\ 10 & 1 \end{bmatrix}$ (d) $\begin{bmatrix} 10 & 1\\ 1 & 10 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 10\\ 10 & 1 \end{bmatrix}$ (d) $\begin{bmatrix} 10 & 1\\ 1 & 10 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 10\\ 10 & 1 \end{bmatrix}$ (d) $\begin{bmatrix} 10 & 1\\ 1 & 10 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 10\\ 10 & 1 \end{bmatrix}$ (d) $\begin{bmatrix} 10 & 1\\ 1 & 10 \end{bmatrix}$ 83. What is the inverse of $\begin{bmatrix} 0 & 0 & 1\\ 0 & 1 & 0\\ 1 & 0 & 0 \end{bmatrix}$? (wurgetaclasses com Www.guptaclasses com Www.guptaclas	7 9 .	What is the term indep	endent of x in the expansion of	explanation of A
(a) 1/3 (b) 19/54 (c) 1/4 (c) 1/4 (d) No such term exists in the expansion 80. In a geometric progression with first term a and common ratio r, what is the arithmetic mean of first five terms? (a) $a + 2r$ (b) a^2 (c) $a(r^5 - 1)/(r - 1)$ (d) $a(r^5 - 1)/[5(r - 1)]$ 81. If $2x = 3 + 5i$, then what is the value (c) (a) 4 (b) -4 (c) 8 (d) -8 (a) 4 (b) -4 (c) 8 (d) -8 (a) 4 (b) -4 (c) 8 (d) -8 (c) $10 - 0$ (a) $\begin{bmatrix} 0 & 10 \\ 10 & 0 \end{bmatrix}$ (b) $\begin{bmatrix} 10 & 0 \\ 0 & 10 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 10 \\ 10 & 1 \end{bmatrix}$ (d) $\begin{bmatrix} 10 & 1 \\ 1 & 10 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 10 \\ 10 & 1 \end{bmatrix}$ (d) $\begin{bmatrix} 10 & 1 \\ 1 & 10 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 10 \\ 10 & 1 \end{bmatrix}$ (d) $\begin{bmatrix} 10 & 1 \\ 1 & 10 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 10 \\ 10 & 0 \end{bmatrix}$ (b) $\begin{bmatrix} 10 & 0 \\ 0 & 10 \\ 1 & 0 & 0 \end{bmatrix}$ (c) $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$ (c) $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$ (c) $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$ (c) $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$ (c) $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$ (c) $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$ (c) $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$ (c) $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$ (c) $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$ (c) $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$ (c) $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$ (c) $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$ (c) $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$ (c) $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$ (c) $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$ (c) $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$ (c) $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$ (c) $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$ (c) $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$ (c) $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$ (c) $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$ (c) $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$ (c) $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$ (c) $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ (c) $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ (c) $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ (c) $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ (c) $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ (c) $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ (c) $\begin{bmatrix} 0 & 0 $		$(1+x+2x^3)\left(\frac{3x^{-2}}{2}-\frac{1}{2}\right)$	$\left \frac{1}{2\pi}\right $?	
(b) 19/54 (c) 1/4 (d) No such term exists in the expansion 80. In a geometric progression with first term a and common ratio r, what is the arithmetic mean of first five terms? (a) $a + 2r$ (b) ar^2 (c) $a(r^5 - 1) / (r - 1)$ (d) $a(r^5 - 1) / [5(r - 1)]$ 81. If $2x = 3 + 5i$, then what is the value ($2x^3 + 2x^2 - 7x + 72$? (a) 4 (b) -4 (c) 8 (d) -8 82. If $A = \begin{bmatrix} 3 & 2\\ 1 & 4 \end{bmatrix}$ then what is A(adj A) equal to ? (a) $\begin{bmatrix} 0 & 10\\ 10 & 0 \end{bmatrix}$ (b) $\begin{bmatrix} 10 & 0\\ 0 & 10 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 10\\ 10 & 1 \end{bmatrix}$ (d) $\begin{bmatrix} 10 & 1\\ 1 & 10 \end{bmatrix}$ 83. What is the inverse of $\begin{bmatrix} 0 & 0 & 1\\ 0 & 10\\ 1 & 0 & 0 \end{bmatrix}$? (a) $\begin{bmatrix} 0 & 0 & 1\\ 0 & 10\\ 10 & 0 \end{bmatrix}$ (b) $\begin{bmatrix} 10 & 0\\ 0 & 10 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 10\\ 10 & 1 \end{bmatrix}$ (d) $\begin{bmatrix} 10 & 1\\ 1 & 10 \end{bmatrix}$ 84. Assertion (A) : $M = \begin{bmatrix} 5 & 10\\ 4 & 8 \end{bmatrix}$ is invertible. Reason (R) : M is singular. 85. What is the inverse of $\begin{bmatrix} 0 & 0 & 1\\ 0 & 10\\ 1 & 0 & 0 \end{bmatrix}$? (b) $F^{\text{terment fyr}}$ (c) $F^{$		`		
(d) No such term exists in the expansion 80. In a geometric progression with first term a and common ratio r, what is the arithmetic mean of first five terms? (a) $a + 2r$ (b) ar^2 (c) $a(r^5 - 1) / (r - 1)$ (d) $a(r^5 - 1) / [5(r - 1)]$ 81. If $2x = 3 + 5i$, then what is the value ($2x^3 + 2x^2 - 7x + 72$? (a) 4 (b) -4 (c) 8 (d) -8 82. If $A = \begin{bmatrix} 3 & 2\\ 1 & 4 \end{bmatrix}$, then what is $A(adj A)$ equal to ? (a) $\begin{bmatrix} 0 & 10\\ 10 & 0 \end{bmatrix}$ (b) $\begin{bmatrix} 10 & 0\\ 0 & 10 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 10\\ 10 & 0 \end{bmatrix}$ (b) $\begin{bmatrix} 10 & 0\\ 0 & 10 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 10\\ 10 & 0 \end{bmatrix}$ (d) $\begin{bmatrix} 10 & 1\\ 1 & 10 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 10\\ 10 & 1 \end{bmatrix}$ (d) $\begin{bmatrix} 10 & 1\\ 1 & 10 \end{bmatrix}$ (e) $\begin{bmatrix} 0 & 0 & 1\\ 0 & 10 \\ 10 & 0 \end{bmatrix}$ (d) $\begin{bmatrix} 10 & 0\\ 0 & 10 \\ 0 & 10 \end{bmatrix}$ (e) $\begin{bmatrix} 0 & 0 & 1\\ 0 & 1 \end{bmatrix}$ (f) $\begin{bmatrix} 0 & 0 & 1\\ 0 & 1 \end{bmatrix}$ (g) Assertion (A) : The work done when the force at displacement are perpendicular. 83. What is the inverse of $\begin{bmatrix} 0 & 0 & 1\\ 0 & 1 & 0\\ 1 & 0 & 0 \end{bmatrix}$? (what is the inverse of $\begin{bmatrix} 0 & 0 & 1\\ 0 & 1 & 0\\ 1 & 0 & 0 \end{bmatrix}$? (wurdefly Water for the source for the following term for the following to correct? (a) $p = 1$ (b) $p = 0$ (c) $ p > 1$ (d) $ p \le 1$ 82. If $A = [\frac{5}{10} + 1 + 2(p - 2p) + (\frac{1 - \sqrt{-3}}{2})^{2^9} = -1$ Reason (R): M is singular. 83. What is the inverse of $\begin{bmatrix} 0 & 0 & 1\\ 0 & 1 & 0\\ 1 & 0 & 0 \end{bmatrix}$? (Water for the following tackbook com/gupta-classes		(b) 19/54		Reason (R) : The slope of the tangent to the curve at
80. In a geometric progression with first term a and common ratio r, what is the arithmetic mean of first five terms? (a) $a + 2r$ (b) ar^2 (c) $a(r^5 - 1) / (r - 1)$ (d) $a(r^5 - 1) / [5(r - 1)]$ 81. If $2x = 3 + 5i$, then what is the value ($2x^3 + 2x^2 - 7x + 72$? (a) 4 (b) -4 (c) 8 (d) -8 82. If $A = \begin{bmatrix} 3 & 2\\ 1 & 4 \end{bmatrix}$, then what is A(adj A) equal to ? (a) $\begin{bmatrix} 0 & 10\\ 10 & 0 \end{bmatrix}$ (b) $\begin{bmatrix} 10 & 0\\ 0 & 10 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 10\\ 10 & 1 \end{bmatrix}$ (d) $\begin{bmatrix} 10 & 1\\ 1 & 10 \end{bmatrix}$ (d) $\begin{bmatrix} 10 & 1\\ 0 & 10 \end{bmatrix}$ (d) $\begin{bmatrix} 10 & 1\\ 1 & 10 \end{bmatrix}$ 83. What is the inverse of $\begin{bmatrix} 0 & 0 & 1\\ 0 & 10 \\ 10 & 0 \end{bmatrix}$ (d) $\begin{bmatrix} 10 & 1\\ 1 & 10 \\ 1 & 0 & 0 \end{bmatrix}$ 84. Assertion (A) : $\begin{bmatrix} -1 + \sqrt{-3} \\ 2 \end{bmatrix}^{2p} + \left(\frac{-1 - \sqrt{-3}}{2} \right)^{2p} = -1$ Reason (R) : M is singular. 85. What is the inverse of $\begin{bmatrix} 0 & 0 & 1\\ 0 & 10 \\ 10 & 0 \end{bmatrix}$ (d) $\begin{bmatrix} 10 & 1\\ 1 & 10 \\ 1 & 0 & 0 \end{bmatrix}$ 85. What is the inverse of $\begin{bmatrix} 0 & 0 & 1\\ 0 & 10 \\ 10 & 0 \end{bmatrix}$? 86. Assertion (A) : $\int \frac{e^x}{2} (1 + x \log x) dx + c = e^x \log x$ Reason (R) : $\begin{bmatrix} e^x [f(x) + f'(x)] dx = e^x f(x) + c \\ 11 & \sin^4 x - \cos^4 x = p$, then which one of the following correct? (a) $p = 1$ (b) $p = 0$ (c) $ p > 1$ (d) $ p \le 1$ 92. If $\cos \theta < \sin \theta$ and θ lies in the first quadrant, then whico one of the following is correct? (a) $0 < \theta < \pi/4$ (b) $\pi/4 < \theta < \pi/2$			in the expansion	
(a) $a + 2r$ (b) ar^{2} (c) $a(r^{5} - 1) / (r - 1)$ (d) $a(r^{5} - 1) / [5(r - 1)]$ 81. If $2x = 3 + 5i$, then what is the value ($2x^{3} + 2x^{2} - 7x + 72$? (a) 4 (b) -4 (c) 8 (d) -8 82. If $A = \begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix}$ then what is $A(adj A)$ equal to ? (a) $\begin{bmatrix} 0 & 10 \\ 10 & 0 \end{bmatrix}$ (b) $\begin{bmatrix} 10 & 0 \\ 0 & 10 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 10 \\ 10 & 1 \end{bmatrix}$ (d) $\begin{bmatrix} 10 & 1 \\ 1 & 10 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 10 \\ 10 & 1 \end{bmatrix}$ (d) $\begin{bmatrix} 10 & 1 \\ 1 & 10 \end{bmatrix}$ (d) $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 10 \\ 10 & 0 \end{bmatrix}$? 83. What is the inverse of $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 10 \\ 10 & 0 \end{bmatrix}$? (b) Evered by (c) Evered by	80.	In a geometric progress	ion with first term a and commo	displacement are perpendicular to each other is zero.
87. Assertion (A) : The probability of drawing either an a $2x^3 + 2x^2 - 7x + 72$? (a) 4 (b) -4 (c) 8 (d) -8 82. If $A = \begin{bmatrix} 3 & 2\\ 1 & 4 \end{bmatrix}$, then what is $A(adj A)$ equal to ? (a) $\begin{bmatrix} 0 & 10\\ 10 & 0 \end{bmatrix}$ (b) $\begin{bmatrix} 10 & 0\\ 0 & 10 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 10\\ 10 & 1 \end{bmatrix}$ (d) $\begin{bmatrix} 10 & 1\\ 1 & 10 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 10\\ 10 & 1 \end{bmatrix}$ (d) $\begin{bmatrix} 10 & 1\\ 1 & 10 \end{bmatrix}$ (d) $\begin{bmatrix} 0 & 1\\ 1 & 10 \end{bmatrix}$ (e) $\begin{bmatrix} 0 & 0 & 1\\ 0 & 10 \end{bmatrix}$ (f) $\begin{bmatrix} 0 & 0 & 1\\ 0 & 10 \end{bmatrix}$ (f) $\begin{bmatrix} 0 & 0 & 1\\ 0 & 10 \end{bmatrix}$ (g) $\begin{bmatrix} 10 & 0\\ 0 & 10 \end{bmatrix}$ (g) $\begin{bmatrix} 0 & 0 & 1\\ 0 & 1 \end{bmatrix}$ (g) $\begin{bmatrix} 10 & 0\\ 0 & 10 \end{bmatrix}$ (g) $\begin{bmatrix} 10 & 0\\ 10 & 0 \end{bmatrix}$? (g) $\begin{bmatrix} 2 & 0 & 1\\ 0 & 1 & 0\\ 1 & 0 & 0 \end{bmatrix}$? (g) Assertion (A) : $\begin{bmatrix} -1 + \sqrt{-3} \\ 2 \end{bmatrix}^{29} + \begin{pmatrix} -1 - \sqrt{-3} \\ 2 \end{bmatrix}^{29} = -1$ Reason (R) : $\omega^2 = -1$ (g) Assertion (A) : $M = \begin{bmatrix} 5 & 10\\ 4 & 8 \end{bmatrix}$ is invertible. Reason (R) : M is singular. 80. Assertion (A) : $\int \frac{e^x}{x} (1 + x \log x) dx + c = e^x \log x$ Reason (R) : $\begin{bmatrix} e^x [f(x) + f'(x)] dx = e^x f(x) + c \end{bmatrix}$ (g) $p = 1$ (b) $p = 0$ (c) $ p > 1$ (d) $ p \le 1$ 92. If cos $\theta < \sin and \theta$ lies in the first quadrant, then which one of the following is correct ? (a) $0 < e < \pi/4$ (b) $\pi/4 < \theta < \pi/2$				
81. If $2x = 3 + 51$, then what is the value c $2x^3 + 2x^2 - 7x + 72$? (a) 4 (b) -4 (c) 8 (d) -8 82. If $A = \begin{bmatrix} 3 & 2\\ 1 & 4 \end{bmatrix}$, then what is $A(adj A)$ equal to ? (a) $\begin{bmatrix} 0 & 10\\ 10 & 0 \end{bmatrix}$ (b) $\begin{bmatrix} 10 & 0\\ 0 & 10 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 10\\ 10 & 1 \end{bmatrix}$ (d) $\begin{bmatrix} 10 & 1\\ 1 & 10 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 10\\ 10 & 1 \end{bmatrix}$ (d) $\begin{bmatrix} 10 & 1\\ 1 & 10 \end{bmatrix}$ (d) $\begin{bmatrix} 10 & 1\\ 1 & 10 \end{bmatrix}$ 83. What is the inverse of $\begin{bmatrix} 0 & 0 & 1\\ 0 & 1 & 0\\ 1 & 0 & 0 \end{bmatrix}$? 84. Assertion (A) : $\left(\frac{-1 + \sqrt{-3}}{2}\right)^{29} + \left(\frac{-1 - \sqrt{-3}}{2}\right)^{29} = -1$ Reason (R) : M is singular. 85. What is the inverse of $\begin{bmatrix} 0 & 0 & 1\\ 0 & 1 & 0\\ 1 & 0 & 0 \end{bmatrix}$? 86. Assertion (A) : $M = \begin{bmatrix} 5 & 10\\ 4 & 8 \end{bmatrix}$ is invertible. 87. Reason (R) : M is singular. 89. Assertion (A) : $\int \frac{e^x}{x} (1 + x \log x) dx + c = e^x \log x$ Reason (R) : $\int e^x [f(x) + f'(x)] dx = e^x f(x) + c$ 91. If $\sin^4 x - \cos^4 x = p$, then which one of the following correct? (a) $p = 1$ (b) $p = 0$ (c) $ p > 1$ (d) $ p \le 1$ 92. If $\cos \theta < \sin \theta = 0$ fiest in the first quadrant, then which one of the following is correct? (a) $0 < e < \pi/4$ (b) $\pi/4 < \theta < \pi/2$				
(c) 8 (d) -8 82. If $A = \begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix}$, then what is $A(adj A)$ equal to ? (a) $\begin{bmatrix} 0 & 10 \\ 10 & 0 \end{bmatrix}$ (b) $\begin{bmatrix} 10 & 0 \\ 0 & 10 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 10 \\ 10 & 1 \end{bmatrix}$ (d) $\begin{bmatrix} 10 & 1 \\ 1 & 10 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 0 \\ 10 & 1 \end{bmatrix}$ (d) $\begin{bmatrix} 10 & 1 \\ 1 & 10 \end{bmatrix}$ 83. What is the inverse of $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$? 84. Assertion (A) : $M = \begin{bmatrix} 5 & 10 \\ 4 & 8 \end{bmatrix}$ is invertible. Reason (R) : M is singular. 85. What is the inverse of $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$? 86. Assertion (A) : $M = \begin{bmatrix} 5 & 10 \\ 4 & 8 \end{bmatrix}$ is invertible. 87. Reason (R) : M is singular. 89. Assertion (A) : $\int \frac{e^x}{x} (1 + x \log x) dx + c = e^x \log x$ 89. Assertion (A) : $\int \frac{e^x}{x} (1 + x \log x) dx + c = e^x \log x$ 80. Assertion (A) : $\int \frac{e^x}{x} (1 + x \log x) dx + c = e^x \log x$ 80. Assertion (A) : $\int \frac{e^x}{x} (1 + x \log x) dx + c = e^x \log x$ 81. If $\sin^4 x - \cos^4 x = p$, then which one of the following correct? 82. If $A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$? 83. What is the inverse of $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$? 84. Assertion (A) : $M = \begin{bmatrix} 5 & 10 \\ 4 & 8 \end{bmatrix}$ is invertible. 85. Reason (R) : $\begin{bmatrix} e^x & (1 + x \log x) dx + c = e^x \log x \\ Reason (R) & \begin{bmatrix} e^x & (1 + x \log x) dx + c = e^x \log x \\ Reason (R) & \begin{bmatrix} e^x & (1 + x \log x) dx + c = e^x \log x \\ Reason (R) & \begin{bmatrix} e^x & (1 + x \log x) dx + c = e^x \log x \\ Reason (R) & \begin{bmatrix} e^x & (1 + x \log x) dx + c = e^x \log x \\ Reason (R) & \begin{bmatrix} e^x & (1 + x \log x) dx + c = e^x \log x \\ Reason (R) & \begin{bmatrix} e^x & (1 + x \log x) dx + c = e^x \log x \\ Reason (R) & \begin{bmatrix} e^x & (1 + x \log x) dx + c = e^x \log x \\ Reason (R) & \begin{bmatrix} e^x & (1 + x \log x) dx + c = e^x \log x \\ Reason (R) & \begin{bmatrix} e^x & (1 + x \log x) dx + c = e^x \log x \\ Reason (R) & \begin{bmatrix} e^x & (1 + x \log x) dx + c = e^x \log x \\ Reason (R) & \begin{bmatrix} e^x & (1 + x \log x) dx + c = e^x \log x \\ Reason (R) & \begin{bmatrix} e^x & (1 + x \log x) dx + c = e^x \log x \\ Reason (R) & \begin{bmatrix} e^x & (1 + x \log x) dx + c = e^x \log x \\ Reason (R) & \begin{bmatrix} e^x & (1 + x \log x) dx + c = e^x \log x \\ Reason (R) & \begin{bmatrix} e^x & (1 + x \log x) dx + c = e^x \log x \\ Reason (R) & \begin{bmatrix} e^x & (1 + x \log x) dx + c = e^x \log x \\ Reason (R) & \begin{bmatrix} e^x & (1 + x \log x) dx + c = e^x \log x \\ Reason (R) & \begin{bmatrix} e^x & (1 + x \log$	81.	$2x^3 + 2x^2 - 7x + 72$?		
(a) $\begin{bmatrix} 0 & 10 \\ 10 & 0 \end{bmatrix}$ (b) $\begin{bmatrix} 10 & 0 \\ 0 & 10 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 10 \\ 10 & 1 \end{bmatrix}$ (d) $\begin{bmatrix} 10 & 1 \\ 1 & 10 \end{bmatrix}$ 88. Assertion (A) : $\left(\frac{-1+\sqrt{-5}}{2}\right)^{-1} + \left(\frac{-1+\sqrt{-5}}{2}\right)^{-1} = -1$ Reason (R) : $\omega^2 = -1$ 89. Assertion (A) : $M = \begin{bmatrix} 5 & 10 \\ 4 & 8 \end{bmatrix}$ is invertible. Reason (R) : M is singular. 80. Assertion (A) : $\int \frac{e^x}{x} (1 + x \log x) dx + c = e^x \log x$ Reason (R) : $\int \frac{e^x}{x} (1 + x \log x) dx + c = e^x \log x$ Reason (R) : $\int \frac{e^x}{x} (1 + x \log x) dx + c = e^x \log x$ Reason (R) : $\int \frac{e^x}{x} (1 + x \log x) dx + c = e^x \log x$ Reason (R) : $\int \frac{e^x}{x} (1 + x \log x) dx + c = e^x \log x$ Reason (R) : $\int \frac{e^x}{x} (1 + x \log x) dx + c = e^x \log x$ Reason (R) : $\int \frac{e^x}{x} (1 + x \log x) dx + c = e^x \log x$ Reason (R) : $\int \frac{e^x}{x} (1 + x \log x) dx + c = e^x \log x$ Reason (R) : $\int \frac{e^x}{x} (1 + x \log x) dx + c = e^x \log x$ Reason (R) : $\int \frac{e^x}{x} (1 + x \log x) dx + c = e^x \log x$ Reason (R) : $\int \frac{e^x}{x} (1 + x \log x) dx + c = e^x \log x$ Reason (R) : $\int \frac{e^x}{x} (1 + x \log x) dx + c = e^x \log x$ Reason (R) : $\int \frac{e^x}{x} (1 + x \log x) dx + c = e^x \log x$ Reason (R) : $\int \frac{e^x}{x} (1 + x \log x) dx + c = e^x \log x$ Reason (R) : $\int \frac{e^x}{x} (1 + x \log x) dx + c = e^x \log x$ Reason (R) : $\int \frac{e^x}{x} (1 + x \log x) dx + c = e^x \log x$ Reason (R) : $\int \frac{e^x}{x} (1 + x \log x) dx + c = e^x \log x$ Reason (R) : $\int \frac{e^x}{x} (1 + x \log x) dx + c = e^x \log x$ Reason (R) : $\int \frac{e^x}{x} (1 + x \log x) dx + c = e^x \log x$ Reason (R) : $\int \frac{e^x}{x} (1 + x \log x) dx + c = e^x \log x$ Reason (R) : $\int \frac{e^x}{x} (1 + x \log x) dx + c = e^x \log x$ Reason (R) : $\int \frac{e^x}{x} (1 + x \log x) dx + c = e^x \log x$ Reason (R) : $\int \frac{e^x}{x} (1 + x \log x) dx + c = e^x \log x$ Reason (R) : $\int \frac{e^x}{x} (1 + x \log x) dx + c = e^x \log x$ Reason (R) : $\int \frac{e^x}{x} (1 + x \log x) dx + c = e^x \log x$ Reason (R) : $\int \frac{e^x}{x} (1 + x \log x) dx + c = e^x \log x$ Reason (R) : $\int \frac{e^x}{x} (1 + x \log x) dx + c = e^x \log x$ Reason (R) : $\int \frac{e^x}{x} (1 + x \log x) dx + c = e^x \log x$ Reason (R) : $\int \frac{e^x}{x} (1 + x \log x) dx + c = e^x \log x$ Reason (R) : $\int \frac{e^x}{x} (1 + x \log x) dx + c = e^x \log x$ Reason (R) : $\int \frac{e^x}{x} (1 $		(c) 8	(d) – 8	
$ \begin{array}{c} \left[\begin{array}{c} 10 & 0 \end{array} \right] \\ \left[\begin{array}{c} 0 & 10 \end{array} \right] \\ \left[\begin{array}{c} 0 & 10 \end{array} \right] \\ \left[\begin{array}{c} 10 & 1 \end{array} \right] \\ \left[\begin{array}{c} 1 & 10 \end{array} \right] \\ \left[\begin{array}{c} 1 & 10 \end{array} \right] \\ \left[\begin{array}{c} 1 & 10 \end{array} \right] \\ \left[\begin{array}{c} 1 & 0 \end{array} \right] \\ \left[\begin{array}{c} 0 & 0 \end{array} \right] \\ \left[\begin{array}{c} 1 & 0 \end{array} \right] \\ \left[\begin{array}{c} 0 & 0 \end{array} \right] \\ \\ \left[\begin{array}{c} 0 & 0 \end{array} \right] \\ \left[\begin{array}{c} 0 & 0 \end{array} \right] \\ \\ \left[\begin{array}{c} 0 & 0 \end{array} \right] \\ \left[\begin{array}{c} 0 & 0 \end{array} \right] \\ \\ \left[\begin{array}{c} 0 & 0 \end{array} \right] \\ \\ \left[\begin{array}{c} 0 & 0 \end{array} \right] \\ \\ \left[\begin{array}{c} 0 & 0 \end{array} \right] \\ \\ \left[\begin{array}{c} 0 & 0 \end{array} \right] \\ \left[\begin{array}{c} 0 & 0 \end{array} \right] \\ \\ \left[\begin{array}{c} 0 & 0 \end{array} $	82.			
83. What is the inverse of $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$? 83. What is the inverse of $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$? 83. What is the inverse of $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$? 84. Reason (R) : M is singular. 90. Assertion (A) : $\int \frac{e^x}{x} (1 + x \log x) dx + c = e^x \log x$ Reason (R) : $\begin{bmatrix} e^x [f(x) + f'(x)] dx = e^x f(x) + c \end{bmatrix}$ 91. If $\sin^4 x - \cos^4 x = p$, then which one of the following correct ? (a) $p = 1$ (b) $p = 0$ (c) $ p > 1$ (d) $ p \le 1$ 92. If $\cos\theta < \sin\theta$ and θ lies in the first quadrant, then which one of the following is correct ? (a) $0 < \theta < \pi/4$ (b) $\pi/4 < \theta < \pi/2$				Reason (R) : $\omega^2 = -1$
Reason (R) : $\begin{bmatrix} e^x [f(x) + f'(x)] dx = e^x f(x) + c \end{bmatrix}$ Powered byOuter of byCLASSESWWW.guptaclasses.comLike us on facebook- https://www.facebook.com/gupta-classesPowered byCOL ASSESWWW.guptaclasses.comLike us on facebook- https://www.facebook.com/gupta-classesPowered byOuter of the following correct ?(a) $p = 1$ (b) $p = 0$ (c) $ p > 1$ (d) $ p \le 1$ 92. If $\cos \theta < \sin \theta$ and θ lies in the first quadrant, then which one of the following is correct ?(a) $0 < \theta < \pi/4$ (b) $p = 0$ (c) $ p > 1$ (d) $ p \le 1$ 92. If $\cos \theta < \sin \theta$ and θ lies in the first quadrant, then which one of the following is correct ?(a) $0 < \theta < \pi/4$ (b) $\pi/4 < \theta < \pi/2$			5	
Reason (R) : $\begin{bmatrix} e^x [f(x) + f'(x)] dx = e^x f(x) + c \end{bmatrix}$ Powered byOutputPowered byCLASSES www.guptaclasses.comLike us on facebook- https://www.facebook.com/gupta-classesPowered byOutputOutputPowered byCLASSES (a) $p = 1$ (b) $p = 0$ (c) $ p > 1$ (d) $ p \le 1$ 92. If $\cos \theta < \sin \theta$ and θ lies in the first quadrant, then which one of the following is correct ? (a) $0 < \theta < \pi/4$ (a) $0 < \theta < \pi/4$ (b) $\pi/4 < \theta < \pi/2$	83.	What is the inverse of	0 1 0 ?	- -
Powered bycorrect ? GUPTA CLASSES www.guptaclasses.com(a) $p = 1$ (b) $p = 0$ (c) $ p > 1$ (c) $ p > 1$ (c) $ p < 1$ Like us on facebook- https://www.facebook.com/gupta-classes92. If $\cos \theta < \sin \theta$ and θ lies in the first quadrant, then while one of the following is correct ? (a) $0 < \theta < \pi/4$ Like us on facebook- https://www.facebook.com/gupta-classes(a) $p = 1$ (c) $ p > 1$ (c) $ p < 1$		i		Reason (R) : $\int e^{x} [f(x) + f'(x)] dx = e^{x} f(x) + c$
GUPTA (a) $p = 1$ (b) $p = 0$ (c) $ p > 1$ www.guptaclasses.com(a) $p = 1$ (c) $ p > 1$ Like us on facebook- https://www.facebook.com/gupta-classes(b) $p = 0$ (c) $ p > 1$ (c) $ p > 1$ 92. If $\cos \theta < \sin \theta$ and θ lies in the first quadrant, then which one of the following is correct ? (a) $0 < \theta < \pi/4$ (b) $p = 0$ (c) $ p > 1$ (c) $ p > 1$ (d) $ p \le 1$ (e) $p < \pi/4$ (f) $p < \pi/4$ (h) $p < \pi/4$ (Pa	wered by	
WAY TO SUCCESS WWW.guptaclasses.com92. If $\cos \theta < \sin \theta$ and θ lies in the first quadrant, then which one of the following is correct ?Like us on facebook- https://www.facebook.com/gupta-classes(a) $0 < \theta < \pi/4$ (b) $\pi/4 < \theta < \pi/2$		G	JPTA	
Like us on facebook- https://www.facebook.com/gupta-classesone of the following is correct ?(a) $0 < \theta < \pi/4$ (b) $\pi/4 < \theta < \pi/2$		CL	ASSES	
https://www.facebook.com/gupta-classes (a) $0 < \theta < \pi/4$ (b) $\pi/4 < \theta < \pi/2$				one of the following is correct ?
(c) $0 < \theta < \pi/3$ (d) $\pi/3 < \theta < \pi/2$				(a) $0 < \theta < \pi/4$ (b) $\pi/4 < \theta < \pi/2$

visit us : www.guptaclasses. e-mail: alokguptag319@gmail.c A PREMIER INSTITUTE FOR MBA-CAT/MCA/BANK P.O. & SSC ENTRANCE ACADEM			
93.	The angle of elevation from a point on the bank of a river of the top of a temple on the other bank is 45°. Retreating 50 m, the observer finds the new angle of elevation as 30°. What is the width of the river ? (a) 50 m (b) $50\sqrt{3}$ m (c) $50/(\sqrt{3}-1)$ m (d) 100 m		(c) $\frac{180^{\circ}\log\tan\left(\frac{\pi}{4}+\frac{x}{2}\right)}{\pi}+c$ (d) $\frac{180^{\circ}\log\tan\left(\frac{\pi}{4}+\frac{\pi x}{360^{\circ}}\right)}{\pi}+c$
94.	If $\sin^2 x + \sin^2 y = 1$, then what is the value of $\cot(x + y)$? (a) 1 (b) $\sqrt{3}$ (c) 0 (d) $1/\sqrt{3}$	107.	The profit function, in rupees, of a firm selling x items $(x \ge 0)$ per week is given by $P(x) = -3500 + (400 - x)x$. How many items should the firm sell so that the firm has maximum profit?
95.	What is the value of $\cos 10^\circ + \cos 110^\circ + \cos 130^\circ$? (a) -1 (b) 0 (c) 1 (d) 2	108.	(a) 400 (b) 300 (c) 200 (d) 100 A stone thrown vertically upward satisfies the equation
96.	If $\frac{dy}{dx} = 1 + x + y + xy$ and $y(-1) = 0$, then what is $y(x)$		$s = 64t - 16t^2$, where s is in meter and t is in second. What is the time required to reach the maximum height?
	equal to ?		(a) 1 s (b) 2 s (c) 3 s (d) 4 s
	(a) $e^{\frac{(1+x)^2}{2}} - 1$ (b) $e^{\frac{(1-x)^2}{2}}$	109.	If $f(x) = 3x^2 + 6x - 9$, then
	(a) $e^{-2} - 1$ (b) e^{-2} (c) $\log(1+x) - 1$ (d) $\log(1-x)$		(a) $f(x)$ is increasing in (-1, 3) (b) $f(x)$ is decreasing in (3, ∞)
	$\frac{1}{(2)} \log (1 + x) = 1 \qquad (3) \log (1 - x)$		(c) $f(x)$ is increasing in $(-\infty - 1)$
97.	What is the value of $\int_0^{\pi/2} \log(\tan x) dx$?	110	(d) $f(x)$ is decreasing in $(-\infty, -1)$ If $f(x) = \sin^2 x^2$, then what is $f'(x)$ equal to ?
	(a) 0 (b) 1 (c) -1 (d) $\pi/4$		(a) $4x \sin(x^2) \cos(x^2)$ (b) $2 \sin(x^2) \cos(x^2)$
98.	What is $\int \tan^2 x \sec^4 x dx$ equal to ?		(c) $4\sin(x^2)\sin^2 x$ (d) $2x\cos^2(x^2)$
	(a) $\frac{\sec^5 x}{5} + \frac{\sec^3 x}{3} + c$ (b) $\frac{\tan^5 x}{5} + \frac{\tan^3 x}{3} + c$	111.	If $f(x) = \cos x$, $g(x) = \log x$ and $y = (gof)(x)$, then what
			is the value of $\frac{dy}{dx}$ at $x = 0$?
	(c) $\frac{\tan^5 x}{5} + \frac{\sec^3 x}{3} + c$ (d) $\frac{\sec^5 x}{5} + \frac{\tan^3 x}{3} + c$		(a) 0 (b) 1 (c) -1 (d) 2
99 .	What is $\lim_{x \to 0} \frac{\sin^2 ax}{bx}$ (a, b are constants) equal to ?	112.	(a) 0 (b) 1 (c) -1 (d) 2 If $f(x) = \begin{cases} 3x - 4, & 0 \le x \le 2\\ 2x + \lambda, & 2 < x \le 3 \end{cases}$
	(a) 0 (b) <i>a/b</i>		is continuous at $x = 2$, then what is the value of λ ? (a) 1 (b) -1 (c) 2 (d) -2
100.	(c) a^2/b (d) Does not exist If $f(x) = \tan x + e^{-2x} - 7x^3$, then what is the value of	113.	If $x\cos\theta + y\sin\theta = 2$ is perpendicular to the line $x - y = 3$, then what is one of the value of θ ?
	f'(0)?		(a) $\pi/6$ (b) $\pi/4$ (c) $\pi/2$ (d) $\pi/3$ If x-axis is tangent to the circle $x^2 + y^2 + 2gx + 2fy$
	(a) -2 (b) -1 (c) 0 (d) 3	114,	+ k = 0, then which one of the following is correct?
101.	What are the degree and order respectively of differential equation of the family of rectangular hyperbolas whose axes of symmetry are the coordinate axes ?		(a) $g^2 = k$ (b) $g^2 = f$ (c) $f^2 = k$ (d) $f^2 = g$
	(a) 1, 1 (b) 1, 2 (c) 2, 1 (d) 2, 2	115.	What is the sum of focal radii of any point on an ellipse equal to ?
102.	The function $f(x) = x^2 - 2x$ increases for all (a) $x > -1$ only (b) $x < -1$ only		(a) Length of latusrectum(b) Length of major-axis
	(a) $x > -1$ only (b) $x < -1$ only (c) $x > 1$ only (d) $x < 1$ only		(c) Length of minor-axis
103	What is $\int_0^1 x (1-x)^n dx$ equal to ?	118	(d) Length of semi-latusrectum What does an equation of the first degree containing one
100.		110.	arbitrary parameter passing through a fixed point
	(a) $\frac{1}{n(n+1)}$ (b) $\frac{1}{(n+1)(n+2)}$		represent ? (a) Circle (b) Straight line
	(c) 1 (d) 0	447	(c) Parabola (d) Ellipse What is the foot of the perpendicular from the point (2, 3)
104.	Let a and b be two distinct roots of a polynomial equation $f(x) = 0$. Then there exists at least one root lying between a and b of the polynomial equation	111.	on the line $x + y - 11 = 0$? (a) (1, 10) (b) (5, 6)
	(a) $f(x) = 0$ (b) $f'(x) = 0$	118.	(c) (6, 5) (d) (7, 4) Consider the following statements
	(c) $f''(x) = 0$ (d) None of these	110.	1. The equation to a straight line parallel to the axis of x
105:	If $3^x + 3^y = 3^{x+y}$, then what is $\frac{dy}{dx}$ equal to?		is $y = d$, where d is a constant. 2. The equation to the axis of x is $x = 0$.
	(a) $\frac{3^{x+y}-3^x}{(b)}$ (b) $\frac{3^{x-y}(3^{v}-1)}{(b)}$		Which of the statement(s) given above is/are correct ?(a) 1 only(b) 2 only(c) Both 1 and 2(d) Neither 1 nor 2
	$1-3^{x}$	119.	What is the angle between the planes $2x - y + z = 6$ and
	(a) $\frac{3^{x+y}-3^x}{3^y}$ (b) $\frac{3^{x-y}(3^y-1)}{1-3^x}$ (c) $\frac{3^x+3^y}{3^x-3^y}$ (d) $\frac{3^x+3^y}{1+3^{x+y}}$		x + y + 2z = 3? (a) $\pi/2$ (b) $\pi/3$
106.	What is $\int \sec x^\circ dx$ equal to ?	120.	(c) $\pi/4$ (d) $\pi/6$ What is the equation of a plane through the x-axis and
	(a) $\log(\sec x^\circ + \tan x^\circ) + c$	120.	passing through the point $(1, 2, 3)$? (a) $x + y + z = 6$ (b) $x = 1$
	(b) $\frac{\pi \log \tan\left(\frac{\pi}{4} + \frac{\pi}{2}\right)}{180^\circ} + c$		(c) $y + z = 5$ (d) $z + y = 1$
	190*		