SSC Test Series -21. Solution (New Pattern)

1	C	26	B	51	A	76	A
2	D	27	B	52	A	77	D
3	B	28	C	53	D	78	C
4	D	29	B	54	C	79	B
5	A	30	D	55	B	80	C
6	C	31	A	56	A	81	B
7	D	32	A	57	B	82	B
8	A	33	B	58	D	83	A
9	C	34	A	59	C	84	C
10	C	35	D	60	D	85	A
11	C	36	C	61	A	86	C
12	C	37	A	62	D	87	C
13	C	38	D	63	B	88	A
14	A	39	D	64	B	89	D
15	C	40	A	65	A	90	B
16	D	41	C	66	A	91	B
17	D	42	B	67	C	92	D
18	C	43	D	68	D	93	C
19	C	44	A	69	C	94	D
20	D	45	C	70	C	95	B
21	D	46	D	71	C	96	A
22	C	47	D	72	A	97	C
23	C	48	A	73	A	98	D
24	C	49	D	74	B	99	A
25	d	50	C	75		100	A

26. (B) The required remainder $=d_{1} \times r_{2}+r_{1}$
where, $d_{1}=$ the first divisor $=12$
$r_{1}=$ the first remainder $=4$
$r_{2}=$ the second remainder $=6$
\therefore The required remainder $=12 \times 6+4=76$
27. (B) Oder of surds are $4,3,2$. LCM of 4,3 , and 2 is 12 .

So, convert each surd into a surd order 12
$\sqrt[4]{10}=\sqrt[12]{(10)^{3}}=\sqrt[12]{1000}$
$\sqrt[3]{6}=\sqrt[12]{(6)^{4}} \sqrt[12]{1296}$
$\sqrt{3}=\sqrt[12]{(3)^{6}}=\sqrt[12]{729}$
$\sqrt[3]{6}>\sqrt[4]{10}>\sqrt{3}$
28. (C) Number of one digit pages from 1 to $9=9$

Number of two digit pages from 10 to $99=90$
Number of three digit pages from 100 to $200=101$
\therefore Total number of required figures
$=(9 \times 1)+(90 \times 2)+(101 \times 3)=492$
29. (B)
30. (D) LCM of $3,5,6,8,10$ and $12=120$

Required number $=120 \mathrm{~K}+2 ; \mathrm{K}$ is a positive integer.

120
117

3
$120 \mathrm{~K}+2=(13 \times 9+3) \mathrm{K}+2$
$=(13 \times 9 \times K)+(3 K+2)$
For every value of $\mathrm{K},(13 \times 27 \times \mathrm{K})$ is always divisible by 13 .
Putting value of K equal to $1,2,3,4, \ldots$. etc.
In succession, we find that number 8.
Least value of K which will make $(3 K+2)$ divisible by 13 is 8 .
\therefore The required number $=120 \times 8+2$

$$
\begin{aligned}
& =960+2 \\
& =962
\end{aligned}
$$

31. (A) B's profit $=$ Rs. $\frac{235-45}{2}=$ Rs. 95

A's profit $=$ Rs. $95+45=$ Rs. 95
A's profit per month $=$ Rs. $\frac{140}{3}$
B's profit per month $=$ Rs. $\frac{95}{4}$
Their capitals are proportional to their profit,
A's capital : B capital $=\frac{140}{3}: \frac{95}{4}=112: 57$
Difference between their capitals $=112-57=55$, but the actual difference is 550 .
A's capital $=112 \times \frac{550}{55}=$ Rs. 1120
32. (A) House containing only one person

$$
=100-40=60 \%
$$

Houses containing only a male

$$
=60 \times \frac{20}{100}=12 \%
$$

Houses containing only one female

$$
=60-12=48 \%
$$

33. (B) Ratio of parts

$$
\begin{aligned}
& =\frac{1}{100+2 \times 5}: \frac{1}{100+3 \times 5}: \frac{100}{100+4 \times 5} \\
& \frac{1}{100}: \frac{1}{115}: \frac{1}{120} \\
& =276: 264: 253=793 \frac{95}{4} 177930
\end{aligned}
$$

Difference between greatest and smallest
$=(276-253) \times 10=$ Rs. 230
34. (A) S is 4 times as fast as B.

It means if A does a work in 1 day then B will do in 4 days.

$4-1=3 \times 1545$
35. (D) Payment is quarterly, so, $r=4 \%, t=8$ years Required answer

$$
\begin{aligned}
& =\frac{100 \times 2280}{100 \times 8+\frac{8 \times 7 \times 4}{2}} \\
& =\frac{2280 \times 100}{912} \\
& =\text { Rs. } 250
\end{aligned}
$$

36. (C)

Time taken by to reach R from $P=$ Time taken by B to
Reach Q and return from Q to R
$\Rightarrow \frac{x}{5}=\frac{22}{6}+\frac{22-x}{6}$
$\Rightarrow \frac{x}{5}+\frac{x}{6}=\frac{22}{6}+\frac{22}{6}$
$\Rightarrow \frac{11 \mathrm{x}}{30}=\frac{22}{3}$
$\Rightarrow x=20 \mathrm{~km}$
37. (A) Let the distance between Delhi and Kanpur is x . Let train leaving from Delhi is A and from Kanpur is B.
A^{\prime} s speed $=\frac{X}{10 a m-5 a m}=\frac{x}{5} \mathrm{~km} /$ hour
B's speed $=\frac{x}{2 p m-7 a m}=\frac{x}{7} \mathrm{~km} /$ hour
Distance covered by A till $7 \mathrm{am}=\frac{2 \mathrm{x}}{5} \mathrm{~km}$
Remaining Distance $=x-\frac{x}{5}=\frac{3 x}{5} k m$
Relative speed $=\frac{\mathrm{x}}{5}+\frac{\mathrm{x}}{7}=\frac{12 \mathrm{x}}{35} \mathrm{~km} /$ hour
Time taken by both trains to cover the distance
$\frac{\frac{3}{5} x}{\frac{12 x}{35}}=\frac{7}{4}$ hours $=1$ hours 45 min
\therefore The two trains will meet at $7 \mathrm{am}+1$ hour 45 min = $8: 45 \mathrm{am}$
38. (D) Take $\theta=45^{\circ}$

$$
x=1+1=2
$$

$$
y=\sqrt{2}-\frac{1}{\sqrt{2}}=\frac{1}{\sqrt{2}}
$$

$$
\left(x^{2} y\right)^{\frac{2}{3}}-\left(x y^{2}\right)^{\frac{2}{3}}
$$

$$
=\left(4 \times \frac{1}{\sqrt{2}}\right)^{\frac{2}{3}}-\left(2 \times \frac{1}{2}\right)^{\frac{2}{3}}
$$

$$
=(2 \times \sqrt{2})^{\frac{2}{3}}-(1)^{\frac{2}{3}}
$$

$$
=2-1
$$

$$
=1
$$

39. (D) $z=\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x-\sqrt{1-\sin x}}}$

$$
\Rightarrow \frac{(\sqrt{1+\sin x}+\sqrt{1-\sin x})}{(\sqrt{1+\sin x}-\sqrt{1-\sin x})} \times \frac{(\sqrt{1+\sin x}+\sqrt{1-\sin x})}{(\sqrt{1+\sin x}-\sqrt{1-\sin x})}
$$

$$
\Rightarrow \mathrm{z}=\frac{1+\sin \mathrm{x}+1-\sin \mathrm{x}+2 \sqrt{1+\sin \mathrm{x}} \times \sqrt{1-\sin \mathrm{x}}}{1+\sin \mathrm{x}-1+\sin \mathrm{x}}
$$

$$
\Rightarrow \mathrm{z}=\frac{2+2 \sqrt{1+\sin x} \times \sqrt{1-\sin x}}{2 \sin x}
$$

$$
\Rightarrow \mathrm{z}=\frac{1+\sqrt{1-\sin ^{2} \mathrm{x}}}{\sin \mathrm{x}}
$$

$$
\Rightarrow \mathrm{z}=\frac{1+\sqrt{\cos ^{2} \mathrm{x}}}{\sin \mathrm{x}}
$$

$$
\Rightarrow z=\frac{1+\cos x}{\sin x}
$$

$$
\Rightarrow z=\operatorname{cosec} x+\cot x
$$

40. (A)

$\tan \theta=\frac{\mathrm{h}}{160}$
$\tan 2 \theta=\frac{\mathrm{h}}{60}$
$\tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^{2} \theta}$
$\Rightarrow \frac{\mathrm{h}}{50}=\frac{2 \times \frac{\mathrm{h}}{160}}{1-\left(\frac{\mathrm{h}}{160}\right)}$
$\Rightarrow \frac{80}{60}=\frac{1}{1-\left(\frac{\mathrm{h}}{160}\right)^{2}}$
$\Rightarrow 1-\left(\frac{\mathrm{h}}{160}\right)^{2}=\frac{60}{80}$
$\Rightarrow\left(\frac{\mathrm{h}}{160}\right)^{2}=\frac{1}{4}$
$\Rightarrow \frac{\mathrm{h}}{160}=\frac{1}{2}$
$\Rightarrow h=80 \mathrm{~m}$
41. (C) $x^{\sqrt[x]{x}}=(x \sqrt{x})^{x}$
$\Rightarrow x^{x^{3 / 2}}=\left(x^{\frac{3}{2}}\right)^{x}$
$\Rightarrow x^{x^{3 / 2}}=x^{\frac{3}{2} x}$
By comparing
$x^{\frac{3}{2}}=\frac{3}{2} x$
$\Rightarrow x^{\frac{1}{2}}=\frac{3}{2}$
$\Rightarrow \mathrm{x}=\frac{9}{4}$
42. (B) If $x^{2}+y+z, y^{2}=z+x, z^{2}=x+y$

Now, $\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}$
$=\frac{x}{x^{2}+x}+\frac{y}{y^{2}+y}+\frac{z}{z^{2}+z}$
$=\frac{x}{x+y+z}+\frac{y}{y^{2}+y}+\frac{z}{x+y+z}=1$
43. (D) Let total votes $=100$

$55 \%-45 \%=10 \%$ of $96 \rightarrow 240$
$100 \rightarrow \frac{240}{96 \times 10} \times 100 \times 100$
$=2500$ votes
44. (A)

45. (C)

AT $=6$ (given)
$\Delta \mathrm{AVT} \square \Delta \mathrm{ADM}$
$\frac{A V}{A D}=\frac{A T}{A M}$
$\frac{1}{2}=\frac{6}{\mathrm{AM}}$
$\Rightarrow \mathrm{AM}=12$
$\therefore \mathrm{TM}=6$
$\triangle C D M \square \Delta C B T$
$\frac{C D}{B D}=\frac{C M}{T M}$
$\Rightarrow \frac{1}{1}=\frac{C M}{6}$
$\Rightarrow \mathrm{CM}=6$
$=6+6=12$
46. (D)

$\triangle \mathrm{OCD}$ is equilateral triangle.
$\angle C O D=60^{\circ}$
$\therefore \angle \mathrm{CBD}=30^{\circ}$ (angle form by chord to circumference is Half of form by chord to centre.)
$\therefore \angle \mathrm{ACB}=90^{\circ}$
$\therefore \angle \mathrm{BCP}=180^{\circ}-90^{\circ}$
In $\triangle \mathrm{CBP}$
$\angle \mathrm{BCP}+\angle \mathrm{CBP}+\angle \mathrm{CPB}=180^{\circ}$
$\Rightarrow 90^{\circ}+30^{\circ}+\angle C P B=180^{\circ}$
$\Rightarrow \angle \mathrm{CPB}=60^{\circ}$
and $\angle \mathrm{APB}=60^{\circ}$
47. (D) $R=5 \mathrm{~cm}$
$\mathrm{H}=25 \mathrm{~cm}$
$\triangle A B C \square \triangle A D E$

$\Rightarrow 25-\mathrm{h}=5 \mathrm{r}$
$\Rightarrow \mathrm{h}=25-5 \mathrm{r}$
Volume of frustrum $=\frac{1}{3} \pi h\left(R^{2}+r^{2}+R r\right)$
$110=\frac{1}{3} \times \frac{22}{7} \times(25-5 r)\left(25+r^{2}+5 r\right)$
$\Rightarrow 21 \times 5=(25-5 r)\left(25+r^{2}+5 r\right)$
$\Rightarrow 21=(5-r)\left(25-r^{2}+5 r\right)$
$\Rightarrow 21=5^{3}-r^{3}$
$\Rightarrow 21=125-r^{3}$
$\Rightarrow r^{3}=104$
$\Rightarrow r=\sqrt[3]{104} \mathrm{~cm}$
48. (A)

$\Delta \mathrm{ABC} \square \Delta \mathrm{EDC}$
$\frac{9}{4.5}=\frac{6+x}{x}$
$2 x=6+x$
$\mathrm{x}=6$
$B C=12 \mathrm{~cm}$
$\mathrm{I}=\mathrm{AC}=\sqrt{A B^{2}+B C^{2}}$
$=\sqrt{81+144}$
$=\sqrt{225}$
$=15 \mathrm{~m}$
Lateral surface area $=\pi \mathrm{rl}$
$=\frac{22}{7} \times 12 \times 15$
$=565.7 \mathrm{~m}^{2}$
49. (D) Percentage variation in

Model $\mathrm{A}=\frac{40-30}{30} \times 100=33 \frac{1}{3} \%$
Model $B=\frac{20-15}{15} \times 100=33 \frac{1}{3} \%$
Model C $=\frac{20-15}{15} \times 100=-25 \%$
50. (C) Required answer
$=35 \times \frac{10}{100} \times \frac{15}{100}+44 \times \frac{10}{100} \times \frac{15}{100}$
$=\frac{150}{10000} \times 79=1.1850$ lakhs
= Rs. 1,18,500
Q. 76. (a) No Error
Q. 77. (d) Replace 'to' by 'with'
Q. 78. ©Use 'did she finish' in place of 'she finished'. When the sentence is introduced by an adverb, or when the verb is meant to express a wish or prayer, the inverted form of verb is used.
Example. No sooner did she arrive than she sarted.

