1.

A's one day work $=3$ units
B ;s one day work $=2$ units
$(\mathrm{A}+\mathrm{B})$ complete the whole work in
$\frac{T . W}{\text { eff.of } A+B}=\frac{18}{(3+2)}=3.6$ days
2.

4 days work of A and B is $7 \times 4=28$ units
work left $60-28=32$ units
$\frac{\text { Re } \text { st work }}{\text { Totalwork }}=\frac{32}{60}$, function $=\frac{8}{15}$
3. Cultivate in 1 day

A can cultivate $\frac{2}{5}$ th of land in 6 days
A can cultivate 1 part of land in $6 \times \frac{5}{2}=15$ days
B can cultivate $\frac{1}{3}$ rd of land in 10 days
B can cultivate 1 part of land in 30 days

T.W = 30 units
$\frac{4}{5}$ th of work $=\frac{4}{5} \times 30=24$ units
$\therefore \frac{4}{5}$ th work done by $\mathrm{A}+\mathrm{B}$ in $=\frac{24}{3}$ days $=8$ days
4. If A does a work in 18 days.

ATQ,

B does same work in 9 day.

$$
\text { Days } \longrightarrow \begin{aligned}
& 18 \\
& (\mathrm{~A})
\end{aligned}
$$

9
(B)
$=\frac{3}{18}=\frac{1}{6}$ part
5.

$$
\begin{aligned}
& A+B+C=\frac{24}{7} \\
& =3 \frac{3}{7} \text { days }
\end{aligned}
$$

6. Concept

Description :

* In these kind of Questions, always take total work as L.C.M of no of days. Here T.W. is 60.
* If A + B complete the whole work in 12 days, so their one day work will be 5 unit. Similarly we will calculate the one day work for other two pair.
(Here, 12 unit represents twice of the work done by A, B and C . So we will divide it.
work done by $(\mathrm{A}+\mathrm{B}+\mathrm{C}) /$ day $=6$ units/day
$(\mathrm{A}+\mathrm{B}+\mathrm{C})=\frac{12}{2} \therefore$ Total time taken by $(\mathrm{A}+\mathrm{B}+\mathrm{C})$
$\frac{\text { Totalwork }}{T . W \text { done by }(A+B+C) / d a y}=\frac{60}{6}=10$ days

[Like Q : 1]

work done by $(\mathrm{A}+\mathrm{B}+\mathrm{C})$ per day $=6$ units/day $=\frac{360}{6}=60$ days
8.

If they to complete the 12 units work in $\frac{1}{4}$ of day
So it mean their combined efficiency should be 48 units/
(1 man +1 woman)'s efficiency $=4+3=7$ units unit left $=48-=41$ units
Now no of boys required $=\frac{T . W}{\text { eff of } a \text { boy }}=\frac{41}{1}=41$ boys
9.

A + B + C work 13/2 units/day
A + B work 6 unit/work
C work/day $=[(\mathrm{A}+\mathrm{B}+\mathrm{C})-(\mathrm{A}+\mathrm{B})]$
$=\frac{13}{2}-\frac{6}{1}=\frac{1}{2}$ unit $/$ day
C will finish in $\frac{\frac{60}{1}}{2}=120$ days
10.
12(T.W)
eff

If ($\mathrm{A}+\mathrm{C}$)'s one day work $=6$ units and A's one day work $=3$ units then C's one day work $=6-3=3$ units.
$(B+C)$'s one day work $=4$ units
then B's one day work $=1$ unit
B can complee the whole in $\frac{T . W}{\text { eff of } B}=\frac{12}{1}=12 \mathrm{hrs}$
11.

work done by $\mathrm{A}+\mathrm{B}$ per day $(\mathrm{A}+\mathrm{B})=3$ units work done by $\mathrm{A} /$ day $=2$
So,
The portion of the work done by $\mathrm{A}=\frac{2}{3}$
12.

$\mathrm{A}+\mathrm{B}-\mathrm{A}=\mathrm{B}$'s efficiency
$3-1=$ B's efficiency , $2=$ B's efficiency
B alone does in $=\frac{30}{2}=15$ days
13.

If A and B worked till last with same efficiency. Then their profit/wages will be divided in the ratio of efficiency

$\Rightarrow A$	B	$=5$
2	$:$	3
$\downarrow \times 6000$		
$\downarrow \times 6000$		30,000
12000		

14. A can do $\frac{1}{2}$ of a piece of work in 5 days

A can do 1 unit of the work in $\frac{5 \times 2}{1}=10$ days
Similarly B complete 1 unit of work in $=\frac{9 \times 5}{3}=15$ days
C complete 1 unit of work in $=8 \times \frac{3}{2}=12$ days

$=\mathrm{A}+\mathrm{B}+\mathrm{C}$ one day work $=15$ units
\Rightarrow They will complete the whole work in $\frac{60}{15}=4$ days
15. A man and a boy get Rs. 800 for 5 days

A man and a boy get Rs. $\frac{800}{5}=160$ for 1 day.
If man is twice efficient than boy. So their efficiency will be in ratio $2: 1$. (M : B)
Daily wages of the boy is $\frac{1}{3} \times 460=R s .53 \frac{1}{3}$
16. Try to solve these kind of question by option

Because of his being absent he was paid Rs. 750 lessnow check with option. Since max. possible daily wages is asked so it will be 250
Or
It is required to find the highest common factor (HCF) of 5750 and 500

17.

$2(\mathrm{~A}+\mathrm{B}+\mathrm{C})=9$ units/day $\Rightarrow \mathrm{A}+\mathrm{B}+\mathrm{C} \frac{9}{2}$ units
$(C+A)=4 u n i t / d a y$
B's one day work $=\frac{9}{2}-\frac{4}{1}$
$=\frac{1}{2}$ unit/day $\Rightarrow \frac{T . W}{\text { eff.of } B}=\frac{24 \times}{1}=48$ days
18. Let total work be 50 units
$\frac{4}{5} \times$ any multiple of 5

A does $\frac{4}{5}$ th of work $\rightarrow \frac{4}{5} \times 50=40$ units in 20 days So,
A does 2 units/day \Rightarrow work left $=50-40=10$ units
B's work per day $=\frac{4}{3}$
B's will do whole work $=\frac{50}{\frac{4}{3}}=37 \frac{1}{2}$ days
19. Let total work be 1 unit

A and B completes $1-\frac{7}{10}=\frac{3}{10}$ of work in 4 days.
They will complete the whole in $\frac{3}{10}$ work in 4 days 1 work in $\frac{4 \times 10}{3}=13 \frac{1}{3}$ days
20.

$(\mathrm{A}+\mathrm{B}+\mathrm{C})=\frac{15}{2}$ units/day
$(A+B+C)$'s 10 day work $=\frac{15}{2} \times 10=75$ units
work left $120-75=45$ units
Now A will do remaining work in
A's work \rightarrow
$(\mathrm{A}+\mathrm{B}+\mathrm{C})-(\mathrm{B}+\mathrm{C}) \Rightarrow \frac{15}{2}-5 \Rightarrow \frac{5}{2}$ units/day
A will complete $=\frac{T \cdot W}{\text { unitt } / d a y}=\frac{45}{5} \times 2=18$ days
21.

efficiency of C
$=\mathrm{A}+\mathrm{B}+\mathrm{C}-\mathrm{A}-\mathrm{B}=6-3-2=1$ unit/day
efficiency of $B=2$ units, efficiency of $A=3$ units
Share/profit of C $=\frac{\text { eff. of } C}{\text { Totaleff } .} \times$ Total amount

$$
=\frac{1}{6} \times 4500=\text { Rs. } 750
$$

22.

$(\mathrm{A}+\mathrm{B})$ one day work in 3 units
A alone day work is 2 units
B's one day work $=3-2=1$ unit/day
B will complete the whole in $\frac{T . W}{\text { Unit done per day }}$
$=\frac{24}{1}=24$ days
23.

$(A+B)$'s one day work $=8$ units
A's one day work $=5$ units
So, B's one day work $=8-5=3$ units
B alone can do the whole work in $\frac{T . W}{\text { units / days }}$
$=\frac{40}{3}=13 \frac{1}{3}$ days
24.

60(T.W)
efficiency $\longrightarrow 4$

Days $\rightarrow \begin{array}{cc}15 & 20 \\ (\mathrm{~A}+\mathrm{B}) & (\mathrm{B})\end{array}$
$(A+B)$'s one day work $=4$ units
B's one day work $=3$ units
A's one day work $=(\mathrm{A}+\mathrm{B})$'s work -B 's work $=4-3=$ 1 unit
A will complete whole work in $\frac{60}{1}=60$ days
25. A completes $\frac{1}{3}$ unit of work in 5 days

A complete 1 unit of work in $\frac{5}{1} \times 3=15$ days
B completes $\frac{2}{5}$ unit of work in 10 days
B completes 1 unit of work in $\frac{10}{2} \times 5=25$ days

$(A+B)$ alone day work $=5+3=8$ units
$(A+B)$ complete whole work in $=\frac{75}{8}=9 \frac{3}{8}$ days
26.

C's efficiency is $(A+B+C)$'s efficiency
(A +B)'s efficiency $8-7=1$ unit/day
So, C's share will be in ratio

27.

Son's efficiency $=5-3=2$ units/days
Son will do in $\frac{15}{2}=7.5$ days
28. eff. of : $2(\mathrm{~A}+\mathrm{B}+\mathrm{C})=47$
$\mathrm{A}+\mathrm{B}+\mathrm{C}=\frac{47}{2}$
$(A+B+C)$ will complete the whole work in
$\frac{120}{\frac{47}{2}}=\frac{240}{47}=5 \frac{5}{47}$ days
29.

B's one day work $=2$ units/days
A's one day work $=3-2=1$ unit/day
4 days work of 'B' = 4×2 units/ days $=8$ units work left $=24-8=16$ units

A will complete the remaining work in
$\frac{16 \text { units }}{1 \text { unit / day }}=16$ days
30.

A's one day work $=4-2=2$ units
B's ne day work $=3-2=1$ unit
C's one day work $=2-1=1$ unit
A and C complete the whole work $=\frac{T . W}{\text { eff.of } A+B}=\frac{24}{2+1}=8$ days
31.

$\Rightarrow 2(\mathrm{~A}+\mathrm{B}+\mathrm{C})=9$ units/day
$\mathrm{A}+\mathrm{B}+\mathrm{C}=\frac{9}{2}$ units/day, $\mathrm{A}+\mathrm{C}=3$ units/day
B's one day work is
$\Rightarrow \frac{9}{2}-\frac{3}{1}=\frac{9-6}{2}=\frac{3}{2}$ units/days
\Rightarrow complete the wole work in $=\frac{\frac{36}{3}}{2}=24$ days
32. A cmplete $\frac{2}{3}$ units in 8 days

A completess 1 unit in $8 \times \frac{3}{2}=12$ days
B cmpletes $1 \frac{3}{5}$ unit of work in 6 days
B completes 1 unit of work in $6 \times \frac{5}{3}=10$ days

A and B will complete the whole work in
$\frac{(T . W)}{\text { (efficiency of } A+B)}=\frac{60}{6+5}=5 \frac{5}{11}$
33. P cmpletes $\frac{1}{4}$ of work in 10 days

P completes full of work in $\frac{10}{1} \times 4=40$ days
Q completes $40 \$$ of work in 145 days
Q completes full 100% of work in $=\frac{145}{40} \times 100=362.5$ days
R completes $\frac{1}{3}$ of work in -13 days
R completes full of work in $\frac{13}{1} \times 3==39$ days
S completes $\frac{1}{6}$ of work in 7 days
S completes full of work in $\frac{7}{1} \times 6=42$ days
Clearly, we can see R completes the work list.
34.

$A+B+C$ one day work is $(6+5+4)=15$ units $(A+B+C)$ can do the whole work in $=\frac{60}{15}$ $=4$ days
35.

$(A+B)$'s one day work is 5 units
B's ne day work is 2 units
So, A one day work is $=5-2=3$ units
A will complete the whole work in $=\frac{60}{3}=20$ days
36.

$\mathrm{A}+\mathrm{B}+\mathrm{C}=11$ units/day
$\mathrm{A}+\mathrm{B}+\mathrm{C}$ do whole work in $\frac{72}{11}=6 \frac{6}{1}$ days
37.

Boy's efficiency $=$ Total eff. - eff. f A + B
$=56-(24+21)=11$
For 56 units (A + B + Boy) get Rs. 1400
$\therefore 1$ units $(A+B+B o y)=$ Rs. 25
boy get 11 yunits $=25 \times 11=$ Rs. 275
38.

(A)
(B)
$A+B$ one hour work $=7$ unit
$\Rightarrow(\mathrm{A}+\mathrm{B})$'s 8 hours work $=8 \times 7$
$=56$ units/day

$$
\begin{aligned}
& (A+B) \text { complete the whole work in }=\frac{168}{56} \\
& =3 \text { days }
\end{aligned}
$$

39.

A and B do 5 units/hour so they will do $5 \times 8=40$ units in 8 hours or a day. and the whole work will be complete in

$$
=\frac{T . W}{40 \text { units / day }} \Rightarrow \frac{120}{40} \Rightarrow 3 \text { days }
$$

40.

Units/day

$2(\mathrm{~A}+\mathrm{B}+\mathrm{C})=15$ units/days $\Rightarrow(\mathrm{A}+\mathrm{B}+\mathrm{C})=\frac{15}{2}$ units/days
$(\mathrm{A}+\mathrm{B})=6$ units/days $\Rightarrow C=\frac{15}{2}-6=\frac{3}{2}$ units/days
C will complete the work in $=\frac{60}{\frac{3}{2}}=40$ days
41.

(2 men and 8 women)'s one day work is
$=[(2 \times 3)+(8 \times 2]=6+16=22$ units
In 2 days (2 Men +8 Women) will do $=44$ units Remaining work 60-44=16 units will be complete by boys in 2 days.
So, 8 units of work will be done by boys in 1day and \square one boy does one units/days. So 8 boys are required to do 8 units.
$=8$ boys
42.

$2(\mathrm{~A}+\mathrm{B}+\mathrm{C})=12$ units/day
A $+\mathrm{B}+\mathrm{C}=6$ units/day
(A +C) complete 3 units/day
B's one day work $=3$ units
B will complete whole work in $=\frac{60}{33}=20$ days
43.

$(\mathrm{M}+\mathrm{W})$ One day work $=5$ units
M's one day work $=4$ units
So,
woman's one day work $=5-4=1$ unit
Woman will complete in $=\frac{40}{1}=40$ days
44.

A + B can complete the whole work in

$$
\frac{T . W}{\text { efficiancy of } A \text { and } B}=\frac{12}{2+1}=4 \text { days }
$$

45. A can do $\frac{1}{6}$ of work in 5 days

A can do 1 of work in $\frac{5}{1} \times 6=30$ days
B can do $\frac{2}{5}$ of work in 8 days
B can do 1 work in $8 \times \frac{5}{2}=20$ days

A and B will complete the whole work in $=\frac{60}{(2+3)}=12$ days
46.

$(A+B)$'s one day work is $(2+1)$ unit
(A + B)'s 5 day work is $3 \times 5=15$ units
Work left $=40-15=25$
Fraction of work left $=\frac{\text { workleft }}{\text { totalwork }}=\frac{25}{40}=\frac{5}{8}$
47.

$(A+B)$ can do the whole work together in $=\frac{360}{3+2}=12$ days
48.

B's efficiency $=(\mathrm{A}+\mathrm{B})-\mathrm{A}=7-3=4$ units/day B can digit alone in
$\frac{\text { T. } W}{\text { efficiancy of } B}=\frac{84}{4}=21$ days
49.

$(\mathrm{A}+\mathrm{B})$'s one day wage $=4+3=$ Rs. 7
Money Rs. 84 is sufficient to pay wages for

$$
=\frac{84}{(4+3)} \frac{(\text { total money })}{\text { one day wages }} \Rightarrow 12 \text { days }
$$

50. $(\mathrm{A}+\mathrm{B}+\mathrm{C})$'s one day earning $=$ Rs. 150 $(\mathrm{A}+\mathrm{C})$'s one day earning $=$ Rs. 94
B's one day earning $=(\mathrm{A}+\mathrm{B}+\mathrm{C})-(\mathrm{A}+\mathrm{C})$
$=150-94=$ Rs. 56
$(\mathrm{B}+\mathrm{C})$'s one day earning $=$ Rs. 76
C's one day earning $=76-56=$ Rs. 20
