Solutions Mensuration SET-1

(c) Given, length = 55m Breadth = 45m

Area of lawn = 1911m2 Area of rectangular plot

$$= 45 \times 55 = 2475 \text{ m}^2$$

Area of crossroads

$$= 2475 - 1911 = 564 \text{ m}^2$$

Let the width of each crossroad = x m

$$45x + 55x - x^{2} = 564$$

$$x^{2} - 100x + 564 = 0$$

$$x^{2} - 94x + 6x + 564 = 0$$

$$x(x - 94) - 6(x - 94) = 0$$

$$(x - 6)(x - 94) = 0$$

$$x = 6, 94$$
[:94 is discraded]

:. Width of each of the crossroads = 6 m

(a) Let the side of square be x m. 2. So, length of rectangle is (x + 8) m and breadth of rectangle is (x-6) m. According to the question,

Area of square = Area of rectangle.

$$\Rightarrow x \times x = (x+8)(x-6)$$

$$\Rightarrow x^2 = x^2 + 8x - 6x - 48$$

$$\Rightarrow x^2 = x^2 + 2x - 48$$

$$\Rightarrow 2x = 48$$

$$\Rightarrow x = 24 \text{ m}$$

:. Length of the rectangle = 24 + 8 = 32 m Breadth of the rectangle = 24 - 6 = 18 m

$$\therefore \text{Perimeter of the rectangle} = 2(l + b)$$

$$= 2(32 + 18)$$

$$= 2(50) \text{ m}$$

$$= 100$$

(e) Let the base of the right angled triangle 3. be 4x and its height be 5x.

Then, area of the right angled triangle

$$= \frac{1}{2} \times 4x \times 5x$$

$$\Rightarrow 80 = \frac{1}{2} \times 20x^{2}$$

$$\Rightarrow x^{2} = 8$$

$$\Rightarrow x = 2\sqrt{2} \text{ cm}$$
Height = $5x$

$$= 5 \times 2\sqrt{2}$$

$$= 10\sqrt{2} \text{ cm}$$

(a) In ABDE, 4.

$$DE = 28 + 28 = 56 \text{ cm}$$

 $BC = 28 \text{ cm}$
Area of $\triangle BDE = \frac{1}{2} \times DE \times BC$

$$= \frac{1}{2} \times 56 \times 28$$
$$= 784 \text{ cm}^2$$

5. **(b)** Area of square = $28 \times 28 = 784 \text{ cm}^2$

Area of four circles =
$$4\pi r^2$$

$$= 4 \times \frac{22}{7} \times 7 \times 7$$
$$= 616 \text{ cm}^2$$

:. Area of shaded region = 784 - 616 $= 168 cm^{2}$

(c) Area of circle = 7 × Circumference $\pi R^2 = 7 \times 2 \pi R$

:. Circumference of circle = 2 \(\pi R \)

$$= 2 \times \frac{22}{7} \times 14 = 88 \text{ units}$$

(c) The number of tiles will be minimum, if 7. size of each marble is maximum.

> Size of each tile = HCF of 3.78 and 5.25m 378)525(1

.. HCF of 3.78 and 5.25 m = 0.21 m

∴ Number of tiles =
$$\frac{3.78 \times 5.25}{0.21 \times 0.21}$$
 = 450

(b) Distance covered in 1 revolution $= \pi \times diameter = \pi d$

$$1000 \times \frac{22}{7} \times d = 440$$

$$\Rightarrow \qquad d = \frac{440 \times 7}{1000 \times 22} = 0.14 \,\text{m}$$

(c) Let the length of the rectangle be x m 9. and breadth be y m.

According to the question,

Case I
$$xy - (x - 5)(y + 3) = 9$$

 $\Rightarrow xy - (xy - 5y + 3x - 15) = 9$
 $\Rightarrow 5y - 3x + 15 = 9$
 $\Rightarrow 3x - 5y - 6 = 0$...(i)
Case II $(x + 3)(y + 2) - xy = 67$

$$3y + 2x + 6 = 67$$

 $2x + 3y - 61 = 0$...(ii

By Eqs. (i) × 3 + (ii) × 5,

$$9x - 15y - 18 = 0$$

 $10x + 15y - 305 = 0$
 $19x = 323$
 $x = \frac{323}{19} = 17 \text{ m}$

:. Length of the rectangle = 17 m

10. (e) Let the length of rectangle = I m and breadth of rectangle = b m Area of the original rectangle = lb According to the question,

$$I \times \frac{120}{100} \times b \times \frac{80}{100} = 192$$

$$\Rightarrow 1.2l \times 0.8b = 192$$

$$\Rightarrow lb = \frac{192}{1.2 \times 0.8}$$

.. Area of the original rectangle = 200 m2

11. (d)

Radius of the circular garden

$$=\frac{28}{2}=14 \, \text{m}$$

Area of the circle = πr^2

$$=\frac{22}{7}\times14\times14=616\text{m}^2$$

Area of the square plot = $28 \times 28 = 784 \text{ m}^2$

.. Area of the shaded region

$$= (784 - 616)m^2 = 168m^2$$

12. (c) Side of a square = Perimeter

$$=\frac{56}{4}=14$$
 cm

.. Smallest side of the right angled triangle $= 14 - 8 = 6 \, \text{cm}$

Length of rectangle

$$= \frac{\text{Area}}{\text{Breadth}} = \frac{96}{8} = 12 \text{ cm}$$

.. Second side of the triangle = 12 - 4 = 8 cm

13. (b) Radius of circle = $\frac{28}{2}$ = 14 cm

Area of circle =
$$\pi r^2$$

$$=\frac{22}{7}\times14\times14=616$$
cm²

Breadth of rectangle

$$=\frac{550}{25}$$
 = 22 cm

.. Circumference of circle

=
$$\pi \times \text{diameter}$$

= $\frac{22}{7} \times 28 = 88 \text{ cm}$

Perimeter of rectangle

∴ Required sum = (88 + 94)cm = 182 cm

14. (a) For a right angled triangle,

hypotenuse =
$$\sqrt{6^2 + 8^2} = \sqrt{36 + 64}$$

= $\sqrt{100} = 10 \text{ cm}$

Largest side = 10 cm

Side of square = $3 \times 10 = 30$ cm

 \therefore Diagonal of square = $\sqrt{2} \times 30$

$$= 30\sqrt{2} \text{ cm}$$

15. (b) Perimeter of rectangle = 668 cm

Length of a rectangle

= Twice the diameter of a circle

$$334-b=2\times d=2\times 2r=4r$$

$$\therefore r = \frac{334 - b}{4}$$

Area of square = Circumference of circle

$$(22)^2 = 2 \pi r$$

$$484 = \frac{2 \times 22(334 - b)}{7 \times 4}$$

$$\Rightarrow 334 - b = \frac{484 \times 7 \times 4}{2 \times 22} = 308$$

$$\Rightarrow$$
 $b = 334 - 308 = 26 \text{ cm}$

16. (a) Perimeter of square

= 2 × Perimeter of rectangle
= 2 × 2(
$$l + b$$
) = 4(8 + 7) = 60
Side of square = $\frac{60}{4}$ = 15 cm

Diameter of semi-circle = 15 cm

$$\therefore \text{Circumference of semi-circle} = \frac{\pi d}{2} + d$$

$$=\frac{22}{7\times2}\times15+15=38.57$$
 cm